

Project Partners: ATB, Electrolux, IKERLAN, OAS, ONA, The Open Group, University of York

Every effort has been made to ensure that all statements and information contained herein are accurate, however the

SAFIRE Project Partners accept no liability for any error or omission in the same.

© 2020 Copyright in this document remains vested in the SAFIRE Project Partners.

Project Number 723634

D5.8 Final Integrated Cloud Analysis and
Reconfiguration Platform

Version 1.2

13 July 2020

Final

Public Distribution

ATB, IKERLAN, The Open Group, University of York

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page ii Version 1.1 13 July 2020

Confidentiality: Public Distribution

PROJECT PARTNER CONTACT INFORMATION

ATB

Sebastian Scholze

Wiener Straße 1

28359 Bremen

Germany

Tel: +49 421 22092 0

E-mail: scholze@atb-bremen.de

Electrolux Italia

Claudio Cenedese

Corso Lino Zanussi 30

33080 Porcia

Italy

Tel: +39 0434 394907

E-mail: claudio.cenedese@electrolux.it

IKERLAN

Trujillo Salvador

P Jose Maria Arizmendiarrieta

20500 Mondragon

Spain

Tel: +34 943 712 400

E-mail: strujillo@ikerlan.es

OAS

Karl Krone

Caroline Herschel Strasse 1

28359 Bremen

Germany

Tel: +49 421 2206 0

E-mail: kkrone@oas.de

ONA Electroerosión

Jose M. Ramos

Eguzkitza, 1. Apdo 64

48200 Durango

Spain

Tel: +34 94 620 08 00

jramos@onaedm.com

The Open Group

Scott Hansen

Rond Point Schuman 6, 5
th

 Floor

1040 Brussels

Belgium

Tel: +32 2 675 1136

E-mail: s.hansen@opengroup.org

University of York

Leandro Soares Indrusiak

Deramore Lane

York YO10 5GH

United Kingdom

Tel: +44 1904 325 570

E-mail: leandro.indrusiak@york.ac.uk

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page iii

Confidentiality: Public Distribution

DOCUMENT CONTROL

Version Status Date

0.1 Template creation 1 July 2019

0.5 Initial draft with all components 18 September 2019

0.7 Updates and further integration of content 27 September 2019

0.8 Minor updates from BC demonstrators 4 October 2019

0.9 Internal review version 24 October 2019

1.0 EC submission version 31 October 2019

1.2 Updates addressing EC reviewer recommendations 13 July 2020

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page iv Version 1.1 13 July 2020

Confidentiality: Public Distribution

TABLE OF CONTENTS

1. Introduction ... 1

1.1 Overview .. 1

1.2 Document Structure ... 1

2. SAFIRE Integrated Cloud Platform Functionality Description ... 2

2.1 Overview of SAFIRE platform ... 2

2.2 Description of the final SAFIRE platform features ... 3

3. User Manual for the SAFIRE Platform .. 4

3.1 Predictive Analytics ... 5
3.1.1 Introduction ... 5
3.1.2 Service access via MQTT ... 5
3.1.3 Service access via REST Web Service ... 13
3.1.4 Uploaded models .. 13
3.1.5 Training new models ... 14

3.2 Situational Awareness ... 17
3.2.1 Situation Model ... 18
3.2.2 Situation Monitoring ... 18
3.2.3 Situation Determination .. 23

3.3 Optimisation .. 25
3.3.1 Generating FDL templates .. 25
3.3.2 FDL template for ONA BC ... 26
3.3.3 FDL template for OAS BC ... 30
3.3.4 FDL template for Electrolux BC ... 32

3.4 Security Framework .. 34
3.4.1 Components of the Security Framework implementation ... 35
3.4.2 Declarative Policy Language .. 36
3.4.3 Using the ‗ngac‘ Policy Tool .. 37

3.4.3.1 Developing and testing policies .. 37
3.4.3.2 Policy Tool interactive commands .. 38

3.4.4 Using the ‗ngac-server‘ Policy Server .. 39
3.4.4.1 Policy Server startup options .. 39
3.4.4.2 Policy Query API .. 40
3.4.4.3 Policy Administration API .. 41
3.4.4.4 Dynamic Policy Change ... 43
3.4.4.5 Policy composition.. 43

3.4.5 Policy Enforcement Point (PEP) / Resource Access Point (RAP) design pattern ... 44
3.4.5.1 Policy Enforcement, PEP-to-RAP, and Resource Access APIs .. 44
3.4.5.2 Web service PEPs ... 45

3.4.6 Platform protections needed to achieve non-functional properties of TOG-NGAC 45
3.4.6.1 Nonfunctional Reference Monitor properties ... 45
3.4.6.2 NGAC component and interaction integrity ... 46
3.4.6.3 Reliable identities.. 47

4. Installation and Configuration of the SAFIRE Platform .. 48

4.1 Installation and Configuration of the basic SAFIRE architecture components .. 49
4.1.1 Apache NiFi .. 49
4.1.2 Apache Kafka.. 50
4.1.3 Docker, Docker Compose and Docker Registry ... 54

4.1.3.1 Docker ... 55
4.1.3.2 Docker Compose ... 55
4.1.3.3 Docker Container Registry.. 56

4.1.4 Security Framework .. 56
4.1.4.1 Prerequisites and Dependencies .. 56
4.1.4.2 Installation and build ... 57

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page v

Confidentiality: Public Distribution

4.1.4.3 Testing and Using NGAC ... 58
4.1.4.4 Operation of the Policy Server .. 60
4.1.4.5 Configuration of NGAC ... 60
4.1.4.6 Guidance for achieving non-functional properties for TOG-NGAC... 60

4.2 Installation and Configuration of the SAFIRE Dashboard ... 62

4.3 Installation and Configuration of Data Ingestion and Monitoring Services ... 64

4.4 Installation and Configuration of the Predictive Analytics Service .. 64

4.5 Installation and Configuration of the Situational Awareness Services ... 65

4.6 Installation and Configuration of the Optimisation Engine .. 67

5. Conclusions .. 69

6. References .. 70

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page vi Version 1.1 13 July 2020

Confidentiality: Public Distribution

TABLE OF FIGURES

Figure 2-1 Main components of SAFIRE ... 2
Figure 3-1 Clients Registering/Unregistering in PA Service .. 6
Figure 3-2 Client / PA Service interaction use-case diagram (Ona) ... 7
Figure 3-3 Client / PA Service interaction use-case diagram (Electrolux) ... 7
Figure 3-4 Collection of Samples to be evaluated .. 10
Figure 3-5 PA Service produces a prediction per sample ... 11
Figure 3-6 Collection of predictions ... 12
Figure 3-7 Interface checking predictions made by the predictive analytics platform, and their final result 14
Figure 3-8 Predictions database from the Predictive Analytics Platform (anonymised) .. 15
Figure 3-9 Interactive plots in Apache Zeppelin .. 16
Figure 3-10 Retraining of Neural Network Model ... 17
Figure 3-11 NGAC - Functional Architecture .. 36
Figure 3-12 PEP / RAP design pattern for the resource access path ... 44
Figure 4-1 SAFIRE FICP Deployment Diagram .. 48
Figure 4-2 Confirmation of the successful ZooKeeper instalation with netstat .. 51
Figure 4-3 Possible unsuccessful execution of Kafka with Java 9 ... 52
Figure 4-4 Creation of a topic in Kafka .. 52
Figure 4-5 Listing Kafka topics .. 53
Figure 4-6 Creating Kafka producer in a console ... 53
Figure 4-7 Creating Kafka consumer in a console .. 54
Figure 4-8 SAFIRE Dashboard Screenshot .. 64
Figure 4-9 Deployment diagram of the Predictive Analytics Service .. 65
Figure 4-10 Deployment diagram of the Situational Awareness service .. 66

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page vii

Confidentiality: Public Distribution

EXECUTIVE SUMMARY

This deliverable presents the Final Integrated Cloud Platform of the SAFIRE project

and describes the functionality of the integrated full prototypes.

The Final Integrated Cloud Platform (FICP) completes the previous early version with

the description of the full prototype of the SAFIRE services, as well as with details for

the configuration and installation of the different modules in the business case site.

The SAFIRE integrated cloud platform consists of the four main SAFIRE services,

namely the Predictive Analytics (PA), the Situation Determination (SD), the

Optimisation Engine (OE) and the Security Framework (SPT), and its operation is being

monitored using the dashboard. All the modules have been developed using latest open

source technologies, adequate for big data management in an industrial environment,

and have been packaged using docker in order to be directly deployable in different

operating systems. The data transfer within the SAFIRE modules and outside to its

environment (and the business case legacy systems) is being utilised using NiFi

templates. The communication between the modules has been established using the

kafka messaging system. This technology is also being used by the dashboard to

visualise information coming from the running services of the modules to enable real-

time monitoring of their operations while embedded within an industrial environment.

For each of the three business cases, Electrolux, OAS and ONA, the SAFIRE integrated

cloud platform has been configured and connected or integrated with the legacy systems

for data exchange and process management. User installation and configuration

guidelines have been provided to allow future users of SAFIRE to integrate the platform

into their systems.

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page 1

Confidentiality: Public Distribution

1. INTRODUCTION

1.1 OVERVIEW

The present deliverable describes the SAFIRE Final Integrated Cloud Analysis and

Reconfiguration Platform (FICP), which includes SAFIRE adapted functionalities based

on the main services (i.e. Situation Determination, Predictive Analytics and

Reconfiguration & Optimisation) into a unique cloud platform that shares common

features like data ingestion, message handling, security measures, distributed access

control, monitoring or auditing. This cloud version of the platform implements SAFIRE

concept in the cloud as this was adjusted after the validation of the preliminary version.

The document also describes the architecture of the SAFIRE services and provides step

by step guidelines to install and configure the SAFIRE platform. It also describes how

different instances of the FICP have been installed and configured at each of the

project‘s business cases.

1.2 DOCUMENT STRUCTURE

The current deliverable is structured as follows:

- Section 2 presents an overview of the services and features included in SAFIRE

FICP, and how they are implemented at each of the business cases.

- Section 3 provides the user manual of the SAFIRE FICP.

- Section 4 provides guidelines on how to deploy the SAFIRE platform. It describes

the installation and configuration procedures for the different modules of the

SAFIRE platform as generic components.

- Section 5 presents the main conclusions reached by the consortium in the integration

of the SAFIRE platform.

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page 2 Version 1.1 13 July 2020

Confidentiality: Public Distribution

2. SAFIRE INTEGRATED CLOUD PLATFORM FUNCTIONALITY DESCRIPTION

2.1 OVERVIEW OF SAFIRE PLATFORM

SAFIRE offers a solution that gathers data streams from the products/machines and

their contexts to proactively make recommendations leading to the enhancement of the

product performance, or the optimisation and reconfiguration of the production

processes. These data streams provide important insights into the specific requirements

for the factory infrastructure and configuration, and new opportunities for the

improvement of products/machines, which implicitly has an enormous impact on the

user satisfaction by improving the using experience of the product/machine.

SAFIRE has been implemented following the general architectural model in the picture

below.

Figure 2-1 Main components of SAFIRE

As it can be observed, the Data Ingestion services are the entrypoint of data into the

system. This data is then delivered to the Situational Determination Services (composed

by Situation Monitoring and Situation Determination) and the Predictive Analytics

Services.

In general terms, data will be acquired through Apache NiFi (https://nifi.apache.org/), a

popular distributed streaming platform. NiFi is a solution that enables data routing and

transformation, as well as the implementation of mediation logic among systems.

Although the flexibility of NiFi flows and the individual components that comprise

them allow for machinery to connect to and ingest data directly from industrial

machinery thanks to widely used and lightweight protocols such as OPC UA (for on-

https://nifi.apache.org/

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page 3

Confidentiality: Public Distribution

premise connections) and MQTT (for remote connections), the machines do not always

have the hardware/software capabilities to distribute data to any place other than an

industrial computer they are connected to.

In SAFIRE, the industrial machinery does not directly upload the process data to the

cloud. Current industrial equipment and industrial services deployed on-premise are

able to aggregate data from multiple source machines and even enrich this data with

extra variables such as metadata provided by users through Human-Machine interfaces

or sensor data external to the machinery itself, such as the temperature and the humidity

of the premises, as these factors could be key to the performance of the industrial

process. In SAFIRE, the general approach is for data to be aggregated and enriched by

the advanced on-premise systems and then be consumed by the data ingestion systems.

In some specific parts of two use cases, however, the control and monitoring systems

currently deployed on-premise are not able to acquire, process, and transmit the

required signals to the data ingestion module. This has been the case for the

measurement of electrical signals in the ONA and ELECTROLUX use cases. These

electrical signals need to be measured at a magnitude not currently available on their

respective systems. This was solved by implementing a hardware/software solution that

would directly connect to the relevant wiring within the equipment, pre-process data if

necessary, and then upload the data to the cloud via case-specific middleware data

ingestion / transformation systems that would adjust the data and transform from a case-

specific protocol and format, to the same protocols and formats used by the rest of data

ingestion, allowing this wildly different data to be consumed though the same common

entry channels. These case-specific implementations are explained in greater depth in

D2.4 Full Prototype of Predictive Analytics Platform.

Using these technologies, data captured are being made available to all SAFIRE

Services.

SAFIRE FICP implements all the components, including Apache NiFi and Kafka, as

stand-alone services for data ingestion and exchange.

2.2 DESCRIPTION OF THE FINAL SAFIRE PLATFORM FEATURES

The SAFIRE solution provides a highly customisable software platform for production

systems and smart products, offering:

1. Both reactive and predictive reconfiguration for both production systems and

smart products

2. Flexible run-time reconfiguration decisions during production rather than pre-

planned at production planning time

3. Real-time reconfiguration decisions for optimisation of performance and real-

time production and product functions.

The SAFIRE project targets two related technology challenges for smart factories that

present new opportunities for improving production, products and services:

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page 4 Version 1.1 13 July 2020

Confidentiality: Public Distribution

1. Interconnected Systems of Production Systems (SoPS) within smart

manufacturing environments, where individual production systems and the SoPS

as a whole, have hardware (HW) and software (SW) requirements to be

addressed to achieve specific business objectives, such as scheduling, power

consumption, throughput, and maintenance.

2. Connected Product Networks (CPNs) where networked smart products collect

data, can be adapted in the field, and can deliver extended services to customers

through optimisation of smart product performance parameters and

customisation of products to environments, usage patterns and other dynamic

factors.

The advanced analytics and reconfiguration capabilities developed within SAFIRE are

based on mastering the big data challenges associated with manufacturing (sensor and

process data), enterprise and smart product data, to allow manufacturers to address

production-system-behaviour forecasting, and to establish optimisation methods that are

integrated in the design and product chain. Furthermore the platform provides big data

analytic capabilities that meet real-time requirements such that dynamic run-time

reconfiguration decisions are made during production time rather than pre-planned at

production-planning time.

The following technologies and innovations developed in the SAFIRE project are

supporting the above mentioned targets:

 New techniques for reconfiguration and optimisation of production systems and

products based on predictive big data analytics of data generated by exploiting

situational awareness during production and product use.

 A set of tools and services to support:

 Dynamic and predictable reconfiguration and optimisation

 Predictive big data analytics

 Cloud resource management

 New cloud based secure infrastructure for reconfiguration and optimisation of

production systems / smart products.

The SAFIRE infrastructure is targeted to be provided as an add-on for an existing

production system, or next generation smart factory operating system, allowing

production systems to be transformed to include capabilities for dynamic real-time

reconfiguration and optimisation.

3. USER MANUAL FOR THE SAFIRE PLATFORM

This section provides for every feature of the SAFIRE platform a brief overview of how

to use and customize the specific component implementing this feature:

 Predictive Analytics (section 3.1)

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page 5

Confidentiality: Public Distribution

 Situational Awareness (section 3.2)

 Optimisation (section 3.3)

 Security Framework (section 3.4)

An overview on how to install and configure the SAFIRE platform will be given in

section 4.

3.1 PREDICTIVE ANALYTICS

3.1.1 Introduction

After installation and configuration, PA Service in the cloud can be accessed in two

ways, via MQTT and via REST Web Service. The following sections describe how to

invoke PA Service for requesting predictions.

3.1.2 Service access via MQTT

Introduction

PA Service can be accessed via MQTT broker that can be found in amazon cluster in

the following address:

o Address: ec2-34-247-12-59.eu-west-1.compute.amazonaws.com

o Username: elec

o Password: safireproject

o Port: 1883

A client must connect to the MQTT broker and interact with the PA Service via

publishing messages to topics (send message) and subscribing to topics to receive

answers (receive message).

Topic Management

In order to interact with PA Service, a client must Register/Unregister via a common

topic for all clients as shown in Clients Registering/Unregistering in PA Service (this

figure shows an example with Electrolux BC).

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page 6 Version 1.1 13 July 2020

Confidentiality: Public Distribution

Figure 3-1 Clients Registering/Unregistering in PA Service

In this case, the client is a hob from Electrolux (id: hob_23) that sends a JSON message

to the PA Service (described later in detail) and receives back an answer about the

registration. Common topics for Register/Unregister are the following:

 Registering/Unregister – send message to topic:

SAFIRE_PREDICTIVE_ANALYTICS_PREDICTOR

 Answer Registering/Unregister – receive message through subscription to:

SAFIRE_PREDICTIVE_ANALYTICS_PREDICTOR_ANSWE

R

In the answer to the registering message, the client receives two private topics that will

be used for requesting predictions (in Clients Registering/Unregistering in PA Service

these private topics are hob_23_boiling_detection for further requests and

hob_23_boiling_detection_answer for the answers)

Typical Use-Case Flow Diagram

Figure 3-2 shows a typical use-case flow diagram of a client, composed by three phases:

(1) registering, (2) requesting predictions and (3) unregistering. In this example an

Ona cutting machine (id: wedm_12.12.345) client may be requesting predictions of

thickness change event.

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page 7

Confidentiality: Public Distribution

Figure 3-2 Client / PA Service interaction use-case diagram (Ona)

After (1) a registering process (register and wait to receive a registering ok answer via

common topics), (2) the client requests and receive predictions and (3) finally, after

interacting with PA Service the client unregisters.

As another example, in Figure 3-3 a hob in Electrolux may be requesting boiling

predictions.

Figure 3-3 Client / PA Service interaction use-case diagram (Electrolux)

JSON Message to Register

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page 8 Version 1.1 13 July 2020

Confidentiality: Public Distribution

The message to be sent to MQTT is a JSON message with the following format and

must be published to the fix topic

SAFIRE_PREDICTIVE_ANALYTICS_PREDICTOR. Two cases (Electrolux and Ona)

are shown for clarity:

o Electrolux example:

{

"serviceName" : "SafirePrdAnalyticsPredictor",

"messageType" : "ClientRegistering",

"clientId" : "hob_2341",

"modelName" : "electroluxNNModelCurFeaturesF04",

"backendName" : "keras"

}

o Ona example:

{

"serviceName" : "SafirePrdAnalyticsPredictor",

"messageType" : "ClientRegistering",

"clientId" : "wedm_12.12.345",

"modelName" : "onaNNOsciloThicknessModel_OneVsRest_5",

"backendName" : "keras"

}

Fields in bold are specific to the client. ClientId must uniquely identify the client,

modelName specifies the predictive model to be loaded (in this case a *h5 neural

network) and backendName specifies the predictive backend that the PA Service must

invoke to produce predictions (in this case Keras).

Another example of requests, shown below, corresponds to a client registering to

request predictions of an spark model called receiptboilingmodel that predicts receipts

cooking times.

{

"serviceName" : "SafirePrdAnalyticsPredictor",

"messageType" : "ClientRegistering",

"clientId" : "hotel_1",

"modelName" : "receiptboilingmodel",

"backendName" : "spark"

}

Notes:

o clientId , in this case hotel_1, may be any string identifying uniquely the client (for example, identifi-

ers like eu.de.bremen.hotels.hotel421 are also valid).

o modelName , represents the name of machine learning trained model. In this case receiptboilingmodel

represents an spark‘s model.

JSON Answer Message received to confirm Registering

PA Service answers to the Registering message with another JSON message as the one

shown below. This message is received via subscription in fix topic:

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page 9

Confidentiality: Public Distribution

SAFIRE_PREDICTIVE_ANALYTICS_PREDICTOR_ANSWER

{

 "serviceName" : "SafirePrdAnalyticsPredictor",

 "messageType" : "ClientRegisteringOk",

 "clientId" : "hob_2341",

 "clientTopic" : "hob_2341_boil_detection",

 "clientTopicAnswer" : "hob_2341_boil_detection_answer"

}

If PA Service is able to load the modelName (for example a neural network) with the

specified backendName it returns a ClientRegisteringOk type message (as shown

above), otherwise returns a ClientRegisteringFail type message. In the answer message,

if registering was ok, clientTopic and clientTopicAnswer fields contain the private

topics to be used by the client for prediction requests.

As another example, answer message shown below represents the answer to the

registering message to request predictions of an spark model called

receiptboilingmodel that predicts receipts cooking times.

{

 "serviceName" : "SafirePrdAnalyticsPredictor",

 "messageType" : "ClientRegisteringOk",

 "clientId" : "hotel_1",

 "clientTopic" : "hotel_1_cooking_scheduling",

 "clientTopicAnswer" : "hotel_1_cooking_scheduling_answer"

}

 Notes:

o When receiving the answer, PA Service provides two specific topics (private to the client), in this

case, hotel_1_cooking_scheduling and hotel_1_cooking_scheduling_answer. First topic will be used

by client to request predictions (publish). Second topic will be used by client to receive answers with

the predictions (subscribe).

o When receiving the answer, messageType field value may be:

 ClientRegisteringOk – Registering was Ok.

 ClientRegisteringResetOk – The client was already registered. Re-registering was ok.

 ClientRegisteringFail – Registering failed.

JSON Message to Unregister

The message to be sent to MQTT is a JSON message with the following format and

must be published to the fix topic

SAFIRE_PREDICTIVE_ANALYTICS_PREDICTOR.

{

"serviceName" : "SafirePrdAnalyticsPredictor",

"messageType" : "ClientUnregistering",

"clientId" : "hob_2341"

}

JSON Answer Message received to confirm Unregistering

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page 10 Version 1.1 13 July 2020

Confidentiality: Public Distribution

PA Service answers to the Registering message with another JSON message as the one

shown below. This message is received via subscription in fix topic:

SAFIRE_PREDICTIVE_ANALYTICS_PREDICTOR_ANSWER

{

 "serviceName" : "SafirePrdAnalyticsPredictor",

 "messageType" : "ClientUnregisteringOk",

 "clientId" : "hob_2341"

}

Notes:

When receiving the answer, messageType field value may be:

o ClientUnregisteringOk – Unregistering was Ok.

o ClientUnregisteringResetOk – The client was already unregistered. Re-unregistering was ok.

o ClientUnregisteringFail – Unregistering failed.

JSON Message to Request Predictions

The message to be sent to MQTT is a JSON message with the following format and

must be published into the private topic received in the registering message (for

example in topic hob_2341_boil_detection)

{

"serviceName" : "SafirePrdAnalyticsPredictor",

"messageType" : "ClientRequestingPrediction",

"timeStamp" : "1517927276069",

"clientId" : "hob_2341",

"dataFrameColNames" : ["Time [s]","Cur_F08 [A]","Cur_F09 [A]","Cur_F10 [A]"],

"dataFrameColTypes" : ["double","double","double","double"],

"dataFrameRowData" : [[0.0, 52.60463, 49.25544, 46.69432]

[0.7, 45.345, -1.45, 0.09]]

[0.6, 0.5, 0.4, 0.3]]

}

Requesting predictions involves passing to the PA Service a collection of samples for

which the predictive model has to produce a prediction (the PA Service will answer

with a collection of predictions, described later). The key fields, dataFrameColNames,

dataFrameColTypes, dataFrameRowData in this message represent a data table with a

collection of samples as shown in Figure 3-4:

Figure 3-4 Collection of Samples to be evaluated

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page 11

Confidentiality: Public Distribution

In this specific case, the predictive model expects samples with four fields of type

double. If one or more or the samples do not meet the sample type expected by the

model invoked, the prediction will fail.

The PA Service invokes the predictive model backend (i.e. Keras) for each sample and

produces and returns a prediction for each sample, as shown in Figure 3-5.

Figure 3-5 PA Service produces a prediction per sample

JSON Message to Receive answer predictions

PA Service answers to the Requesting Predictions message with another JSON message

as the one shown below. The Answer will be received via subscription in the

topic_answer specified in the answer to the registering message, in this case

hob_2341_boil_detection_answer

{

"serviceName" :"SafirePrdAnalyticsPredictor",

"messageType" :"ClientReceivingPrediction",

"timeStamp" :"1517927276069",

"clientId" :"hob_2341",

"dataFrameColNames" :["probBoiling"],

"dataFrameColTypes" :["double"],

"dataFrameRowDataPrediction" :[[0.201, 0.234, 0.312]],

"errorDescription" :"",

"retCode" :0

}

Important Notes:

o Doubles (i.e 1.1513697245391086E-4) are returned as double values without “”.

o RetCode is returned as an integer without “”;

The key fields, dataFrameColNames, dataFrameColTypes, and

dataFrameRowDataPredictions in this message represent a data table with a collection

of predictions (one prediction per sample) as shown in Figure 3-6. Note that in this case

the predictions consist of a single double value that, for example, represents the

probability of being boiling:

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page 12 Version 1.1 13 July 2020

Confidentiality: Public Distribution

Figure 3-6 Collection of predictions

As another example, request message below (and the answer) represents the case of a

model that predicts the processingTime, monetary cost and quality of a receipt

expressed with the input fields of processTypeName, amountProduced and energy.

Request JSON message:

{

"serviceName" : "SafirePrdAnalyticsPredictor",

"messageType" : "ClientRequestingPrediction",

"timeStamp" : "1517927276069",

"clientId" : "hotel_1",

"dataFrameColNames" : ["processTypeName", "amountProduced", "energy"],

"dataFrameColTypes" : ["string","string","integer"],

"dataFrameRowData" : [["Beef B","250g", 6650]]

}

Answer JSON message:

{

 "serviceName" : "SafirePrdAnalyticsPredictor",

 "messageType" : "ClientReceivingPrediction",

 "timeStamp" : "1517927276069",

 "clientId" : "hotel_1",

 "dataFrameColNames" : [["processingTime","monetary","quality"]],

 "dataFrameColTypes" : [["integer","integer","integer"]],

 "dataFrameRowDataPrediction" : [[115,18,9]],

 "errorDescription" : "",

 "retCode" : 0

}

Description of fields in the messages

This section summarises the meaning of all fields in the JSON messages described

above.

o "serviceName" Always must be set to "SafirePrdAnalyticsPredictor" because is

calling this service. Same value sent in Request is received in Answer.

o "messageType" Can be one of the following values:

 ClientRegistering, ClientRegisteringOk, ClientRegisteringResetOk, Clien-

tRegisteringFail

 ClientUnregistering, ClientUnregisteringOk, ClientUnregisteringOkFail

 ClientRequestingPrediction, ClientReceivingPrediction

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page 13

Confidentiality: Public Distribution

o "timeStamp" It recommended to be the value returned by function now() in the

computer when the client requests the service. It is needed to order the messages on

reception side. Same value sent in Request is received in Answer.

o "clientId" An identificator of the client that is calling the service. Same value sent

in Request is received in Answer.

o "clientTopic" The message will be sent to this topic. Same value sent in Request is

received in Answer.

o "clientTopicAnswer" The answer to the message will be sent to this topic. Same

value sent in Request is received in Answer.

o "modelName" Trained machine learning model to be invoked for prediction.

o "backendName" Machine learning module backend to be invoked, currently must

be keywords "keras" or "spark".

o "dataFrameColNames" List ([]) of data field names provided by the request.

o "dataFrameColTypes" List ([]) of data field types provided by the request. Must be

kerywords "integer", "double", "string", "arrayDouble" or "arrayInteger".

o "dataFrameRowData" List of lists ([[]]) of data field values provided by the re-

quest. One or more rows can be provided.

o "dataFrameRowDataPrediction" List of lists ([[]]) of predicted values. There is

one list of predicted values for each row.

o "errorDescription" Description of the error returned by the service when no predic-

tion is returned (retCode <> 0).

o "retCode" 0 if the service success (and predicts), and <> 0 otherwise (and no pre-

diction was produced).

3.1.3 Service access via REST Web Service

Access via REST Web Service is described in detail in SAFIRE Deliverable D2.4 Full

Prototype of Predictive Analytics Platform, section 9.3.2 Templates to Develop

Predictive Analytics REST Web Service and Clients.

3.1.4 Uploaded models

The following models are currently uploaded in the PA Service:

o onaNNOsciloThicknessModel_OneVsRest_5.h5. This specific predictive model (neu-

ral network) is capable of detecting when the wire is 1 mm ahead of the thickness

change (see deliverable D2.4 section 5.1 devoted to Ona BC for details).

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page 14 Version 1.1 13 July 2020

Confidentiality: Public Distribution

o electroluxNNModelCurFeaturesF*.h5. This collection of predictive models (neural

networks) are capable of predicting if the water on a pot is boiling. Models have

been trained for currents F04, F05, F06, F07, F08, F09 and F10.

o receiptboilingmodel. This model returns the processing time, cost and quality of a

collection of simple cooking receipts. In this case is a plain table for demonstrative

purposes.

3.1.5 Training new models

Once the predictive models have been trained, there is little-to-no human intervention in

the use of the models. Trained models are deployed in the cloud and predictions are

made through the predictive analytics service that can be called via MQTT, Kafka or

REST. The predictive analytics service works behind the scenes and does not provide a

visual interface to interact with it. However, the predictions made can be stored for

further analysis and even for a visual representation if the use case requires so. One

such interface is shown on Figure 3-7.

Figure 3-7 Interface checking predictions made by the predictive analytics platform, and their final re-
sult

On the other hand, when a new case emerges or an existing one changes, there are needs

for visual tools for data scientists and domain experts to use.

The raw data used to train the predictive models is stored within the predictive analytics

module but is not accessible from the exterior by default. Access to the databases can be

enabled manually, if desired. Depending on the use case, different database

management technologies can be used. Some of them use standard widely-used

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page 15

Confidentiality: Public Distribution

protocols/languages such as SQL. Other use cases might use non-relational database

systems such as MongoDB and Apache Cassandra. There are freely available tools to

access any of the databases used in the SAFIRE Predictive Analytics Module. One such

tool, gaining traction and user base continually, is DBeaver
1
. Figure 3-8 shows DBeaver

exploring the predictions data from one of the SAFIRE use cases.

Figure 3-8 Predictions database from the Predictive Analytics Platform (anonymised)

Exploring the data is not enough to gain insight into the patterns embedded on it. Other

tools need to be used to explore the different possible avenues of predictive analytics

before the data scientists and domain experts settle on the parameters of the predictive

model to be developed.

This process is iterative. It takes several cycles of communication between domain

experts and machine learning experts to reach an agreement of business needs and a

realistic result based on the available data. In order to carry out this task, analytics

experts need to show their proposals in a way non-machine-learning-experts can

understand, this is usually done through visual means.

As of late, one of the widely used to convey analytical and programmatical concepts to

non-experts is to use coding notebooks. These notebooks allow interactively

programming and showing the results visually. Usually this is done through rich web

interfaces that offer more visual possibilities than plain text terminals that preceded

them. These notebooks not only allow conveying ideas and results to non-experts. They

are also a very useful tool for data scientists, as they allow quickly making changes,

testing new ideas, trying out new algorithms and parameters, and visualizing their

results with just a few changes. They also allow collaborative research as the entire

analytical process and the results can be natively shared with other experts and can be

concurrently worked on. The notebook technology used in SAFIRE is Apache Zeppelin.

1
 https://dbeaver.io/

https://dbeaver.io/

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page 16 Version 1.1 13 July 2020

Confidentiality: Public Distribution

Apache Zeppelin is a notebook tool that supports many analytics-oriented languages

such as R and Python. It can be easily integrated with many other big data and

analytical technologies from the Apache Project, many of them used in the SAFIRE

project, such as Cassandra and Spark. Figure 3-9 shows interactive plots within an

Apache Zeppelin notebook.

Figure 3-9 Interactive plots in Apache Zeppelin

Once the algorithms and parameters of the predictive model have been decided, these

models can be trained and deployed in the predictive analytics service. From that point

on, no human intervention is necessary as it becomes a behind-the-scenes component

that automatically responds to requests.

However, sometimes, algorithms need to be retrained, meaning the original structure of

the model is not changed however some internal values need to be adjusted to the ever

changing data or the original model‘s structure needs to be extended with the new

patterns. If the model created by the predictive algorithm can be retrained, the predictive

analytics platform provides a tool to retrain the model with new data. An example of a

retrainable model are neural networks. Figure 3-10 shows a neural network model being

retrained with new data.

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page 17

Confidentiality: Public Distribution

Figure 3-10 Retraining of Neural Network Model

Every aspect of the Predictive Analytics Platform has been designed and implemented

ensuring that adding new components (data collectors, predictive algorithms, output

processing) requires only changing a minimal amount of code. The modular

development of tools results in only needing to make changes in the respective modules

while keeping the rest intact. If there are no coding changes required, creating new

predictive models only requires providing the new data in a specific format and

exchanging the required messages with the predictive analytics service, without needing

to change anything within the service itself.

The steps to be followed to train new predictive models are described in detail in

SAFIRE Deliverable D2.4 Full Prototype of Predictive Analytics Platform, section

9.3.1 Templates to Define and Train Predictive Models. This section explains how to

define basic new Spark/Keras models.

3.2 SITUATIONAL AWARENESS

The Situation Determination component allows for identifying changes in the situations

of the environment. The current identified situation is used to support the optimisation /

reconfiguration. It uses monitored ―raw data‖ provided by the SAFIRE data ingestion

NiFi templates, which get data directly from the legacy systems, or the predictive

analytics for the product and processes, as well as knowledge available in different

systems, to derive the product/machine/process current situation. Using the situation

model the monitored data are being evaluated and the situation determined. The module

also fulfils its role as a central broker between the other SAFIRE modules like the

Optimisation Engine or Predictive Analytics module.

Business case specific customisation

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page 18 Version 1.1 13 July 2020

Confidentiality: Public Distribution

In order to adapt the Situation Awareness services within a concrete Business case,

customisations for the following software components have to be done:

 Situation model

 Situation monitoring service

 Situation determination service

3.2.1 Situation Model

In order to provide a custom solution for the different business cases and the company

specific scenarios, a different situation model should be created for each purpose. The

custom situation models will include additional entities that extent the generic ones, and

respective relations as needed. As it is foreseen, the generic entities that will be mainly

extended to the customised situation models, are the Generic Datum and the Metric,

since the specific use-case scenarios will require additional input data and evaluation

measurements. The entities and the respective additional relations are being described in

detail in the early and full prototype documents.

3.2.2 Situation Monitoring

For customising the Situation Monitoring for a specific application scenario, one has to

implement the following business case specific ―plugins‖, which will be included in the

Situation Monitoring Service via its configuration:

System Monitors:

In order to be able to monitor a specific system, one has to implement a Monitor to

ingest data into the Situational Monitoring. For implementation, templates are available

to allow for an easy integration into the Situation Monitoring Service (e.g.

FileSystemMonitor, WebServiceMonitor, DatabaseMonitor).

Parsers:

For each specific monitor that was implemented, a corresponding parser has to be

implemented to be able to parse the content and prepare it for analysing. For

implementation, templates are available to allow for an easy integration into the

Situation Monitoring Service (e.g. FileParser, WebServiceParser, DatabaseParser).

Analysers:

For each specific monitor that was implemented, a corresponding analyser has to be

implemented to be able to analyse the monitored content. The analyser is responsible

for filling the specific monitoring data model. For implementation, templates are

available to allow for an easy integration into the Situation Monitoring Service (e.g.

FileAnalyser, WebServiceAnalyser, DatabaseAnalyser).

Monitoring Data Models:

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page 19

Confidentiality: Public Distribution

In order to be able to monitor a specific system, one has to implement a Monitor to

ingest data into the Situational Monitoring. For implementation, templates are available

to allow for an easy integration into the Situation Monitoring Service.

The individual implementations have to be addressed in a monitoring configuration to

define bundles of classes which are responsible for the monitoring of a specified data

source.

In the following the xml schema (monitoring-config.xsd) for the situational monitoring

configuration is listed. The configuration elements are described in detail.

monitoring-config.xsd
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" targetNamespace="http://www.atb-bremen.de" >
 <xs:element name="config">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="indexes"/>
 <xs:element ref="datasources"/>
 <xs:element ref="interpreters"/>
 <xs:element ref="monitors"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="indexes">
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="unbounded" minOccurs="1" ref="index"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="index">
 <xs:complexType>
 <xs:attribute name="id" use="required" type="xs:ID"/>
 <xs:attribute name="location" use="required" type="xs:anyURI"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="monitors">
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="unbounded" minOccurs="1" ref="monitor"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="monitor">
 <xs:complexType>
 <xs:attribute name="id" use="required" type="xs:ID"/>
 <xs:attribute name="datasource" use="required" type="xs:IDREF"/>
 <xs:attribute name="index" use="required" type="xs:IDREF"/>
 <xs:attribute name="interpreter" use="required" type="xs:IDREF"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="datasources">
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="unbounded" minOccurs="1" ref="datasource"/>
 </xs:sequence>

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page 20 Version 1.1 13 July 2020

Confidentiality: Public Distribution

 </xs:complexType>
 </xs:element>
 <xs:element name="datasource">
 <xs:complexType>
 <xs:attribute name="class" use="required"/>
 <xs:attribute name="id" use="required" type="xs:ID"/>
 <xs:attribute name="monitor" use="required"/>
 <xs:attribute name="options" use="required"/>
 <xs:attribute name="type" use="required" type="xs:NCName"/>
 <xs:attribute name="uri" use="required" type="xs:anyURI"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="interpreters">
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="unbounded" minOccurs="1" ref="interpreter"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="interpreter">
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="unbounded" minOccurs="1" ref="configuration"/>
 </xs:sequence>
 <xs:attribute name="id" use="required" type="xs:ID"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="configuration">
 <xs:complexType>
 <xs:attribute name="analyser" use="required"/>
 <xs:attribute name="parser" use="required"/>
 <xs:attribute name="type" use="required"/>
 </xs:complexType>
 </xs:element>
</xs:schema>

Indexes - Each index entry has the following mandatory attribute

 id: The unique name of the index

 location: The URI of the location the index is stored

Datasources - Each datasource entry has the following mandatory attributes

 id: The unique name of the datasource

 type: The type of the datasource. Possible values are: file, webservice, database

 monitor: The class of the monitor to be used. Possible values are:

package de.atb.context.monitoring.monitors.database.DatabaseMonitor
package de.atb.context.monitoring.monitors.file.FileSystemMonitor
package de.atb.context.monitoring.monitors.file.FilePairSystemMonitor
package de.atb.context.monitoring.monitors.file.FileTripletSystemMonitor
package de.atb.context.monitoring.monitors.webservice.WebServiceMonitor

 options: Options for the datasource can be entered using this value. The options

are dependent on the datasource to be used

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page 21

Confidentiality: Public Distribution

 uri: The uri of the data source to be monitored

 class: The following datasource implementations are available

package de.atb.context.monitoring.config.models.datasources.DatabaseDataSource
package de.atb.context.monitoring.config.models.datasources.FilePairSystemDataSource
package de.atb.context.monitoring.config.models.datasources.FileSystemDataSource
package
de.atb.context.monitoring.config.models.datasources.FileTripletSystemDataSource
package de.atb.context.monitoring.config.models.datasources.WebServiceDataSource

Interpreters - Each interpreter entry has the following mandatory attributes

 id: The unique name of the interpreter

 configuration

 analyser: The analyser class to be used. The following implementations are

available:

package de.atb.context.monitoring.analyser.database.DatabaseAnalyser
package de.atb.context.monitoring.analyser.file.FileAnalyser
package de.atb.context.monitoring.analyser.file.FilePairAnalyser
package de.atb.context.monitoring.analyser.file.FileTripletAnalyser
package de.atb.context.monitoring.analyser.webservice.WebServiceAnalyser

 parser: The parser class to be used. The following implementations are

available:

package de.atb.context.monitoring.parser.database.DatabaseParser
package de.atb.context.monitoring.parser.file.FileParser
package de.atb.context.monitoring.parser.file.FilePairParser
package de.atb.context.monitoring.parser.file.FileTripletParser
package de.atb.context.monitoring.parser.webservice.WebServiceParser

 type: Currently only used for File analyser and parser. Defines the file

extensions to be used.

Monitors - monitors are grouping datasources, interpreters and indexes for the

monitoring of a specific datasoruce (a monitor for a data source). Each monitor entry

has the following mandatory attributes

 id: The unique name of the monitor

 datasource: Id of one datasource which was configured.

 interpreter: Id of one interpreter which was configured.

 Index: Id of one index which was configured.

An example of a whole configuration is provided in the following:

monitoring-config.xml
<?xml version="1.0" encoding="utf-8"?>
<config xmlns="http://www.atb-bremen.de"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.atb-bremen.de monitoring-config.xsd">

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page 22 Version 1.1 13 July 2020

Confidentiality: Public Distribution

 <indexes>
 <index id="index-dummy" location="indexes/dummy"></index>
 <index id="index-safire" location="indexes/safire"></index>
 </indexes>

 <datasources>
 <datasource
id="datasource-dummy"
type="file"
monitor="de.atb.context.monitoring.monitors.file.FilePairSystemMonitor"
uri="target/test-classes/filepairmonitor"
options="extensionOne=1&extensionTwo=2"
class="de.atb.context.monitoring.config.models.datasources.FilePairSystemDataSource
"
 />
 </datasources>

 <interpreters>
 <interpreter id="interpreter-dummy">
 <configuration
type="*"
parser="de.atb.context.monitoring.parser.file.DummyFilePairParser"
analyser="de.atb.context.monitoring.analyser.file.DummyFilePairAnalyser" />
 </interpreter>
 </interpreters>

 <monitors>
 <monitor
 id="monitor-dummy"
 datasource="datasource-dummy"
 interpreter="interpreter-dummy"
 index="index-dummy" />
 </monitors>
</config>

Finally, a service configuration has to be created which defines the services to be

deployed enriched with additional network information (as host, location, name, server,

proxy).

services-config.xml
<?xml version="1.0" encoding="utf-8"?>
<config xmlns="http://www.atb-bremen.de"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <services>
 <service id="AmIMonitoring">
 <host>localhost</host>
 <location>http://localhost:19001</location>
 <name>AmIMonitoringService</name>
 <server>de.atb.context.services.AmIMonitoringService</server>
 <proxy>de.atb.context.services.IAmIMonitoringService</proxy>
 </service>
 <service id="AmI-repository">
 <host>localhost</host>
 <location>http://localhost:19002</location>
 <name>AmIMonitoringDataRepositoryService</name>

<server>de.atb.context.services.AmIMonitoringDataRepositoryService</server>
 <proxy>de.atb.context.services.IAmIMonitoringDataRepositoryService</proxy>
 </service>

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page 23

Confidentiality: Public Distribution

 <service id="PersistenceUnitService">
 <host>localhost</host>
 <location>http://localhost:19004</location>
 <name>PersistenceUnitService</name>
 <server>de.atb.context.services.PersistenceUnitService</server>
 <proxy>de.atb.core.services.IPersistenceUnitService</proxy>
 </service>
 </services>
</config>

3.2.3 Situation Determination

For customising the Situation Determination for a specific application scenario, one has

to implement the following business case specific ―plugins‖, which will be included in

the Situation Determination Service via its configuration:

Situation Identifiers

The main classes of the Situation Identifiers are:

 IContextIdentifier: The interface defining a situation identifier. A situation

identifier is a wrapper that is used to identify a situation based on monitored data

and the situation model. In each concrete implementation of a situation identifier

the usage of a reasoner can be defined.

ContextContainer: This class is a wrapper object that holds an identified situation

during run-time.

Finally, the service configuration the situational determination related services to be

deployed have to be added, enriched with additional network information (as host,

location, name, server, proxy).

services-config.xml
<?xml version="1.0" encoding="utf-8"?>
<config xmlns="http://www.atb-bremen.de"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <services>
 <service id="ContextExtractionService">
 <host>localhost</host>
 <location>http://localhost:19001</location>
 <name>ContextExtractionService</name>
 <server>de.atb.context.services.ContextExtractionService</server>
 <proxy>de.atb.context.services.IContextExtractionService</proxy>
 </service>
 <service id="ContextRepositoryService">
 <host>localhost</host>
 <location>http://localhost:19002</location>
 <name>ContextRepositoryService</name>
 <server>de.atb.context.services.ContextRepositoryService</server>
 <proxy>de.atb.context.services.IContextRepositoryService</proxy>
 </service>
 </services>
</config>

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page 24 Version 1.1 13 July 2020

Confidentiality: Public Distribution

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page 25

Confidentiality: Public Distribution

3.3 OPTIMISATION

The entire optimisation process starts with describing a scenario to be optimised using

Factory Description Language (FDL), briefly described in deliverable D5.6. This can be

performed in two ways: either by configuring template generator tool or just working

directly with a configuration template in the FDL formal. Below, both these possibilities

are explained. In particular, the crucial extracts of FDL templates for the three SAFIRE

industrial cases are discussed to facilitate the manual modification of the plant or order

parameters.

3.3.1 Generating FDL templates

To facilitate the preparation of an FDL description for a certain factory, which for larger

plants can be relatively long, a software tool generating such description has been

written in the Java language and provided in the official SAFIRE Git repository named

optimisation engine. Its branch named formatted_outputs contains the template

generator based on each SAFIRE BC. It is located in package

uk.ac.york.safire.factoryModel. In this section, the process of the FDL description

generation is described based on the OAS BC. The FDL templates for ONA and

Electrolux BCs are simpler due to the lack of production lines.

The template generator for scenarios similar to the OAS BC is located in package

uk.ac.york.safire.factoryModel.OAS. This package contains the following classes:

- DependentSetupPattern which describes the sequence dependent setup,

- Device which describes the plant resources and all their parameters such as resource

type, working modes, availability, etc,

- ProductionLine which describes the set of resources that performs a complete

production manufacturing. In the current version of this class, each production line

is composed of a silo, a mixer and a tank. However, the number and names of these

resources can be changed by an end-user.

- ProductionProcess which describes the recipes to produce commodities, e.g. paints.

This description includes the compatible production lines, the produced amount and

the subprocesses (with their processing time, economic cost, etc.),

- SubProcess which describes the subprocesseses of a production process,

- SubProcessRelation which describes the execution order of subprocesses together

with the temporal relations between them,

- OASFactoryModel which generates a model of the OAS factory,

- OASXMLReader and OASXMLWriter which read from and write an FDL file that

describes the scenario.

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page 26 Version 1.1 13 July 2020

Confidentiality: Public Distribution

The starting point of preparing a new FDL template is to modify the OASFactoryModel

class. In this class, the factory is specified by providing the resource types (enum

DeviceType), working modes of devices (enum ModeType), the number of machines of

each type available in the factory (int[] NumberOfDevices, i.e., 5 silos, 10 mixers and 2

storage tanks). The processing time for each recipe depending on the machine type and

its mode is also provided. Similarly, the template of recipes is generated by providing

the commodities names (String[] Productions), the ordered amounts (int[]

AmountRequired), priority of each commodity (int[] Urgency) working modes of each

machine type, the required production and their amount. Finally, the objectives to be

minimised during the optimisation process are specified as well (String[] Objectives).

With these definitions, we can then generate the factory model, via the method

getOASConfiguration(). Firstly, the devices are generated based on the DeviceType

enum and assigned with their cost for processing in a time unit. Then, the related

production lines are obtained based on these devices. The recipes (i.e., production

processes) are then generated for each required commodity. With each recipe, the

compatible production lines and commodity amount is assigned, as well as

subprocesses, their device affinities and costs. Then, based on

SubProcessRelationTemplate, which defines the execution order of these sub-processes,

the execution order for the subprocesses is imposed. Finally, the sequence dependent

setup is generated via iterating all possible execution order of those subprocesses and

assign an extra cost to the ones that belong to different paint types (mainly for cleaning

the machine). This class is invoked by the XMLWriter class can invoke

getOASConfiguration() method to obtain those 5 lists and then write them into XML as

an OAS factory description (see input folder or simply execute the main method in the

XML Writer). A configuration edited by a user can be read by executing the main

method in the XMLReader class.

3.3.2 FDL template for ONA BC

The considered ONA business case is an example of a discrete manufacturing scenario.

It is related to wire electrical discharge machining (WEDM), where a thermo-electric

sparking process removes material using a wire to cut the desired shape of a part.

Complex profiles with tight tolerances in hard conductive materials can be obtained.

The objectives are to minimise the makespan and the monetary cost per part. This cost

can be obtained by summarising all values of monetaryCost of the subprocesses

involved in producing a given part. If applicable, the values of extraMonetaryCost of

sequenceDependentSetups should be added as well.

Table 1. Example parameters of cutting parts in the considered discrete manufacturing scenario

Part Machine

Size Mode Cutting
time (min)

Wire Cost

per part

(EUR)

Machine
cost per

part (EUR)

Total cost
per part

(EUR)

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page 27

Confidentiality: Public Distribution

Part 01

Small
Small
Small
Small

Medium
...

Large

1
2
3
4
1
...
4

2833.5
2956.2
3042.1
3174.1
2033.5

...
1974.1

28.1
28.1
28.1
30.2
30.2

...
53.7

164.0
140.3
147.8
136.8
242.9
...
408.4

192.1
168.4
175.9
167.0
273.1
...
462.1

...

Part 20

Large

Large

Large

Large

1

2

3

4

5341.3

5505.1

5191.7

4106.6

335.2

383.1

482.1

648.3

5866.7

8381.0

5673.8

4754.9

6201.9

8764.1

5673.8

4754.9

The resource allocation consists of selecting processing devices (and thus production

line) for cutting the part (product). The selected processing devices (machines) can

process parts of various sizes (small, medium or large) and operate in a number of

modes, each related to, e.g., a different wire type. Consequently, all possible modes for

processing each considered part have to be explicitly specified using element

subprocessProcessingDeviceMode. Table 1 presents an example of parameters of

manufacturing parts in the considered factory.

With FDL, each part in the considered discrete manufacturing scenario is characterised

by its name, its priority (in terms of urgency), the number of cuts required to produce

the part and the list of compatible devices of the given production. Besides, a

production contains a set of subprocesses representing each cut operation, where a

production procedure can be pre-empted between cuts. Each subprocess (a cut) contains

the information of processing time, energy consumption and monetary cost for

executing on a given machine. Note, the above configuration is built based on the

consideration that users may need to configure each cut operation manually (e.g., adjust

the processing time). In the case where manually configuring cut operations is not

necessary, a user can also describe a production without providing information of

subprocesses, where the system generates the corresponding subprocesses automatically

based on the given number of cuts.

Then, the Optimisation Engine Configurator (OEC) is used to generate both the

configuration template and the objective function evaluator in the following way.

Depending on the input factory parameter, OEC locates to the correct XML factory

modelling file and reads the corresponding optimisation parameters and factory

descriptions, which include optimisation objectives, factory resources with their

availability, production processes with their subprocesses, subprocess relations of

subprocesses and dependent setups for production processes. An example of the FDL-

based factory model for the considered discrete manufacturing scenario is given below,

starting with the objective description.

<objectives>

<objective name=”makespan” />

<objective name=”monetary” />

</objectives>

The objectives are titled as objective with a name specifying the metric for optimisation

with the assumption of minimisation. For the considered case, two objectives are

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page 28 Version 1.1 13 July 2020

Confidentiality: Public Distribution

supported: makespan and monetary. However, one can configure the objectives to

make the optimisation engine to focus only on one of the objectives by simply removing

the other objective.

<processingDevices>
<processingDevice name=”Small 1” availability =”1”>

<unavailableTimes>
<unavailableTime>50,100</unavailableTime> <una-

vailableTime>250,300</unavailableTime>

</unavailableTimes>
</processingDevice>
<processingDevice name=”Small 2” availability =”1”>

<unavailableTimes>
<unavailableTime>0,20</unavailableTime>

</unavailableTimes>
</processingDevice>
<processingDevice name=”Small 3” availability =”0”>

<unavailableTimes>
<unavailableTime>25,30</unavailableTime>

</unavailableTimes>
</processingDe

vice>

</processingDevic

es>

The resources in a factory are modelled as a list of processingDevice, where each device

is specified with a unique name, availability and unavailable times (in the case where

the device is available only in certain time intervals). As given in the example, device

Small 1 is unavailable during periods 50-100 and 250-300 (from the starting point of

manufacturing, in minutes) while Small 2 is available during the entire manufacturing

process. For the considered process manufacturing scenario, each device is also

associated with an operating mode (i.e., economy, standard or performance), which can

be switched dynamically during run-time with various costs imposed during

manufacturing.

The production model is presented below. This model contains each part to be produced

with a set of subprocesses required to produce it. Each subprocess is then modelled by

OEC as an individual task associated with a specified resource allocation (among all its

compatible resources) and a unique priority for schedule by a fixed priority preemptive

scheduler.

<productionProcess name=”P15” priority=”15” cuts=”10”>
<comptiableDevices>

<comptiableDevice name=”Large 1” processingTime=”5505” energy=”120” mone-

tary=”4651” />
<comptiableDevice name=”Large 2” processingTime=”5341” energy=”120” mone-

tary=”6573” />
<comptiableDevice name=”Large 3” processingTime=”7421” energy=”120” mone-

tary=”3566” />
<comptiableDevice name=”Large 4” processingTime=”6205” ener-

gy=”120” monetary=”4255” /> </comptiableDevices>
<subProcesses>

<subProcess name=”P15 cut 1”>
<subProcessProcessingDevice name=”Large 1” processingTime=”550” energy=”12” mon-

etary=”465” />
<subProcessProcessingDevice name=”Large 2” processingTime=”534” energy=”12” mon-

etary=”657” />
<subProcessProcessingDevice name=”Large 3” processingTime=”742” energy=”12” mon-

etary=”356” />

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page 29

Confidentiality: Public Distribution

<subProcessProcessingDevice name=”Large 4” processingTime=”620”

energy=”12” monetary=”425” /> </subProcess>
<subProcess name=”P15 cut 2”>
<subProcessProcessingDevice name=”Large 1” processingTime=”550” energy=”12” mon-

etary=”465”/>
<subProcessProcessingDevice name=”Large 2” processingTime=”534” energy=”12” mon-

etary=”657”/>
<subProcessProcessingDevice name=”Large 3” processingTime=”742” energy=”12” mon-

etary=”356”/>
<subProcessProcessingDevice name=”Large 4” processingTime=”620”

energy=”12” monetary=”425”/> </subProcess>
<subProcess name=”P15 cut 3”>
<subProcessProcessingDevice name=”Large 1” processingTime=”550” energy=”12” mon-

etary=”465” />
<subProcessProcessingDevice name=”Large 2” processingTime=”534” energy=”12” mon-

etary=”657” />
<subProcessProcessingDevice name=”Large 3” processingTime=”742” energy=”12” mon-

etary=”356” />
<subProcessProcessingDevice name=”Large 4” processingTime=”620”

energy=”12” monetary=”425” />

</subProcess>
</subProcesses>

</productionProcess>

To ensure that the subprocesses of a production process are executed in the correct

order (if necessary), the notion subprocessRelation is introduced to describe the

execution sequence of subprocesses. For either the considered discrete or process

manufacturing scenario, the notion M is used to describe that a subprocess SP2 is

executed immediately after another subprocess SP1. This information is used by OEC

for generating the objective function.

<subprocessRelations>
<subprocessRelation source=”P1 cut 0” destination =”P1 cut 1” allensOperator =”M” />
<subprocessRelation source=”P1 cut 1” destination =”P1 cut 2” allensOperator =”M” />
<subprocessRelation source=”P2 cut 0” destination =”P2 cut 1” allensOperator =”M” />
<subprocessRelation source=”P2 cut 1” destination =”P2 cut 2” allensOperator =”M” />
<subprocessRelation source=”P3 cut 0” destination =”P3 cut 1” allensOperator =”M” />
<subprocessRelation source=”P3 cut 1” destination =”P3 cut 2”

allensOperator =”M” />

</subprocessRelations>

At last, during scheduling, multiple productions could execute on one resource, which

could cause the extra cost for the machine to be cleaned and/or reset for a different

product. The FDL models treat such cost as a set of potential independent tasks for

sequence-dependent setup, where each of such tasks describes the source production

(the product being processed), the target production (the product to be processed), the

resource, time consumption and the corresponding costs. The objective function will be

generated by OEC based on the list of dependent setup tasks and applies these tasks

dynamically where appropriate (i.e., when a dependent setup is necessary) during the

scheduling process.

<sequenceDependentSetups>
<sequenceDependentSetup source=”P1” destination=”P2” processingDevice=”Small 4” ex-

traProcessingTime=”10” extraEnergyConsumption=”10” extraMonetaryCost=”1000” />
<sequenceDependentSetup source=”P1” destination=”P2” processingDevice=”Medium 1” ex-

traProcessingTime=”10” extraEnergyConsumption=”10 ” extraMonetaryCost=”1000” />
<sequenceDependentSetup source=”P1” destination=”P2” processingDevice=”Small 3” ex-

traProcessingTime=”10” extraEnergyConsumption=”10” extraMonetaryCost=”1000” />
<sequenceDependentSetup source=”P1” destination=”P2” processingDevice=”Medium 2” ex-

traProcessingTime=”10” extraEnergyConsumption=”10 ” extraMonetaryCost=”1000” />
<sequenceDependentSetup source=”P1” destination=”P2” processingDevice=”Small 2” ex-

traProcessingTime=”10” extraEnergyConsumption=”10” extraMonetaryCost=”1000” />

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page 30 Version 1.1 13 July 2020

Confidentiality: Public Distribution

<sequenceDependentSetup source=”P1” destination=”P2” processingDevice=”Small 1” ex-

traProcessingTime=”10” extraEnergyConsumption=”10” extraMonetaryCost=”1000” />
<sequenceDependentSetup source=”P1” destination=”P2” processingDevice=”Large 3” ex-

traProcessingTime=”10” extraEnergyConsumption=”10” extraMonetaryCost=”1000” />
<sequenceDependentSetup source=”P1” destination=”P2” processingDevice=”Large 4” ex-

traProcessingTime=”10” extraEnergyConsumption=”10” extraMonetaryCost=”1000” />
<sequenceDependentSetup source=”P1” destination=”P2” processingDevice=”Medium 3” ex-

traProcessingTime=”10” extraEnergyConsumption=”10 ” extraMonetaryCost=”1000” />
<sequenceDependentSetup source=”P1” destination=”P2” processingDevice=”Large 1” ex-

traProcessingTime=”10” extraEnergyConsumption=”10” extraMonetaryCost=”1000” />
<sequenceDependentSetup source=”P1” destination=”P2” processingDevice=”Medium 4” ex-

traProcessingTime=”10” extraEnergyConsumption=”10 ” extraMonetaryCost=”1000” />
<sequenceDependentSetup source=”P1” destination=”P2” processingDevice=”Large 2” ex-

traProcessingTime=”10” extraEnergyConsumption=”10” extraMonetaryCost=”1000” />
</sequenceDependentSetups>

FDL can be applied to other discrete manufacturing scenarios in a similar manner.

3.3.3 FDL template for OAS BC

The description of the factory provided by SAFIRE industrial partner OAS is similar to

that of the considered discrete manufacturing scenario, but with the notion productLine
introduced. The reason to introduce this notation is that, as a typical process

manufacturing plant, commodities produced often require several devices working in

collaboration, with an explicit execution order enforced.

The considered chemical plant produces paints by mixing/dispersion of powdery, liquid

and paste recipe components, following a stored recipe. Table 2 gives an example of

parameters for producing several paints the considered process manufacturing scenario.

Below we provide an example FDL for describing the production line.

<productionLines>
<productionLine name=”ProductionLine 1”>
<productionLineProcessingDevices>
<productionLineProcessingDevice order=”0” name=”Silo 1” />
<productionLineProcessingDevice order=”1” name=”Mixer 1” />
<productionLineProcessingDevice order=”2” name=”Tank 1” />

</productionLineProcessingDevices>
</productionLine>
<productionLine name=”ProductionLine 2”>
<productionLineProcessingDevices>
<productionLineProcessingDevice order=”0” name=”Silo 1” />
<productionLineProcessingDevice order=”1” name=”Mixer 2” />
<productionLineProcessingDevice order=”2” name=”Tank 1” />

</productionLineProcessingDevices>
</productionLine>
<productionLine name=”ProductionLine 3”>
<productionLineProcessingDevices>
<productionLineProcessingDevice order=”0” name=”Silo 2” />
<productionLineProcessingDevice order=”1” name=”Mixer 3” />

<productionLineProcessingDevice order=”2” name=”Tank 1” />

</productionLineProcessingDevices>
</productionLine>
</productionLines>

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page 31

Confidentiality: Public Distribution

Table 2. Example of parameter for producing several paints in the considered OAS BC scenario

Paint Types Compatible Production

Lines
Amount of Produced

Commodity Recipe Execution Time

Std White
{P1,P2,P3, P4,P5}

{P6 ,P7 }

{P8 ,P9}

5 t
10 t
10 t

60 min.
45 min.
30 min.

Super White
{P1,P2,P3, P4,P5}

{P6,P7}
{P8,P9}

6 t
12 t
12 t

90 min.
60 min.
45 min.

Std Blue
{P1,P2,P3, P4,P5}

{P6,P7}
{P8,P9}

4 t
8 t
8 t

100 min.
80 min.
60 min.

Std Green
{P1,P2,P3, P4,P5}

{P6,P7}
{P8,P9}

4 t
8 t
8 t

120 min.
90 min.
60 min.

As given above, the products in the considered process manufacturing scenario are

manufactured by production lines, where each line contains certain devices. All lines

are executed following a strict execution order: Silo, Mixer and Tank. Below presents

the example describing the production process and related-cost for producing the paint

Std Weiss.

<productionProcess name=”Std Weiss 45t” priority =”1”>

<processType name=”Std Weiss A” amountProduced=”5t”>

<comptiableProductionLines>

 <comptiableProductionLine>ProductionLine 1</comptiableProductionLine>

 <comptiableProductionLine>ProductionLine 2</comptiableProductionLine>

 <comptiableProductionLine>ProductionLine 3</comptiableProductionLine>

</comptiableProductionLines>

<subprocesses>
<subprocess name=”Std Weiss A Task 1”>
<subprocessProcessingDevicesGroup processingTime=”15”>
<subprocessProcessingDevice name=”Silo 1” mode=”Ecomony”/>
<subprocessProcessingDevice name=”Mixer 1” mode=”Ecomony”/>

</subprocessProcessingDevicesGroup>
<subprocessProcessingDevicesGroup processingTime=”15”>
<subprocessProcessingDevice name=”Silo 1” mode=”Ecomony”/>
<subprocessProcessingDevice name=”Mixer 1” mode=”Standard”/>

</subprocessProcessingDevicesGroup>
<subprocessProcessingDevicesGroup processingTime=”15”>
<subprocessProcessingDevice name=”Silo 1” mode=”Ecomony”/>
<subprocessProcessingDevice name=”Mixer 1” mode=”Power”/>

</subprocessProcessingDevicesGroup>
</subprocess>
<subprocess name=”Std Weiss A Task 2”>
<subprocessProcessingDevicesGroup processingTime=”120”>
<subprocessProcessingDevice name=”Mixer 1” mode=”Ecomony” />

</subprocessProcessingDevicesGroup>
<subprocessProcessingDevicesGroup processingTime=”80”>
<subprocessProcessingDevice name=”Mixer 1” mode=”Standard” />

</subprocessProcessingDevicesGroup>
<subprocessProcessingDevicesGroup processingTime=”40”>

<subprocessProcessingDevice name=”Mixer 1” mode=”Power” />
</subprocessProcessingDevicesGroup>
<subprocess name=”Std Weiss A Task 3”>
<subprocessProcessingDevicesGroup processingTime=”10”>
<subprocessProcessingDevice name=”Mixer 1” mode=”Ecomony” />
<subprocessProcessingDevice name=”Tank 1” mode=”Standard” />

</subprocessProcessingDevicesGroup>
<subprocessProcessingDevicesGroup processingTime=”10”>
<subprocessProcessingDevice name=”Mixer 1” mode=”Standard” />
<subprocessProcessingDevice name=”Tank 1” mode=”Standard” />

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page 32 Version 1.1 13 July 2020

Confidentiality: Public Distribution

</subprocessProcessingDevicesGroup>
<subprocessProcessingDevicesGroup processingTime=”10”>
<subprocessProcessingDevice name=”Mixer 1” mode=”Power ” />
<subprocessProcessingDevice name=”Tank 1” mode=”Standard”

/>

</subprocessProcessingDevicesGroup>

As described in the FDL extract above, an order of 45 tonnes of Std Weiss is executed

by several sub-orders, where each sub-order produces the maximum amount that the

production line can produce in one execution e.g., Std Weiss A can produce 5 tonnes in

each execution on production line P1.

<subprocessRelations>
<subprocessRelation source=”Std Weiss A Task 1” destination =”Std Weiss A Task 2” al-

lensOperator=”M” />
<subprocessRelation source=”Std Weiss A Task 2” destination =”Std Weiss A Task 3” al-

lensOperator=”M” />
</subprocessRelations>

The Element subprocessRelations contains a set of sub-elements describing the

execution order between subprocesses in a given process, where Allen‘s temporary

operator M indicates that the source subprocess must be executed directly before the

destination.

FDL can be applied to other process manufacturing scenarios in a similar manner.

3.3.4 FDL template for Electrolux BC

The scenario specified by SAFIRE industrial partner Electrolux is similar to OAS BC as

in both of them, an ordered amount of certain commodities (food and paint,

respectively) needs to be produced following stored recipes. In contrast to OAS BC,

some recipes result in inferior quality of the commodities and hence a trade-off between

makespan and quality can be observed. In this BC, the optimisation is then performed

for these two objectives, as can be described in FDL in the following way.

 <objectives>

 <objective name="makespan" />

 <objective name="quality" />

 </objectives>

Table 3 provides example parameters of recipes for the considered scenario. There can

be alternative recipes to produce the same commodity type, possible in different

amount, requiring different processing time or quality. Below, two recipes for boiled

water are shown in FDL.

<productionProcesses>

 <productionProcess name="Boiled Water 3000g" priority="1">

 <processTypes>

 <processType name="Boiled Water A" amountProduced="1000g" predecessor="" ener-

gy="350" processingTime="15" monetary="3" quality="8">

 <comptiableCookingZones>

 <comptiableCookingZone>CookingResource 1</comptiableCookingZone>

 <comptiableCookingZone>CookingResource 2</comptiableCookingZone>

 <comptiableCookingZone>CookingResource 3</comptiableCookingZone>

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page 33

Confidentiality: Public Distribution

 <comptiableCookingZone>CookingResource 4</comptiableCookingZone>

 </comptiableCookingZones>

 </processType>

 <processType name="Boiled Water B" amountProduced="2000g" predecessor="" ener-

gy="1400" processingTime="10" monetary="6" quality="8">

 <comptiableCookingZones>

 <comptiableCookingZone>CookingResource 5</comptiableCookingZone>

 <comptiableCookingZone>CookingResource 6</comptiableCookingZone>

 </comptiableCookingZones>

 </processType>

 </processTypes>

 </productionProcess>

These recipes include also information about energy usage and economical cost.

Optimisation with respect to these objectives is also possible and would require adding

the appropriate keywords inside the objectives section, as shown below for energy

usage (it is assumed that all the objectives are minimised).

 <objectives>

 <objective name="makespan" />

 <objective name="quality" />

 <objective name="energy" />

 </objectives>

In the example above, the first recipe (Boiled Water A) can be processed in cooking

resources 1-4, whereas the second recipe (Boiled Water B) requires either cooking

resource 5 or 6. The cooking resources are formed as a Cartesian product of cooking

zones available in hob and compatible pots. Both these resource types are specified as

processing devices.

<processingDevices>

 <processingDevice name="CZ 1" availability="1">

 <unavailableTimes>

 <unavailableTime />

 </unavailableTimes>

 </processingDevice>

...

 <processingDevice name="Pot 1" availability="1">

 <unavailableTimes>

 <unavailableTime />

 </unavailableTimes>

 </processingDevice>

 </processingDevices>

Pots are paired with cooking zones using the <groupedResource> tag.

<groupedResources>

 <groupedResource name="CookingResource 1">

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page 34 Version 1.1 13 July 2020

Confidentiality: Public Distribution

 <groupedProcessingDevices>

 <groupedProcessingDevice name="CZ 1" />

 <groupedProcessingDevice name="Pot 1" />

 </groupedProcessingDevices>

 </groupedResource>

</groupedResources>

Table 3. Example of parameter for cooking meals in the considered Electrolux BC scenario

Food
type

Recipe
name

Predecessor Amount
(g)

Cooking
zone

Pot type Energy
(kJ)

Cooking
time
(min)

Monetary
cost (€)

Deficiency
(inverse
of quality)

Pasta A Boiled
water A

100 Hob(1),
Hob(2),
Hob(3),
Hob(4)

Pot 1 840 30 0.021 2

B Boiled
water A

100 Hob(1),
Hob(2),
Hob(3),
Hob(4)

Pot 1 770 25 0.018 9

C Boiled
water B

200 Hob(5),
Hob(6)

Pot 2 1120 20 0.021 14

D Boiled
water B

200 Hob(5),
Hob(6)

Pot 2 1190 15 0.018 19

E Boiled
water C

300 Hob(7) Pot 3 1520 10 0.021 22

F Boiled
water C

300 Hob(7) Pot 3 1590 5 0.018 25

Meat
(beef)

A Boiled
water A

250 Hob(1),
Hob(2),
Hob(3),
Hob(4)

Pot 1 4550 120 0.27 5

B Boiled
water A

250 Hob(1),
Hob(2),
Hob(3),
Hob(4)

Pot 1 6650 110 0.18 9

C Boiled
water B

500 Hob(5),
Hob(6)

Pot 2 6900 90 0.27 12

D Boiled
water B

500 Hob(5),
Hob(6)

Pot 2 7000 85 0.18 16

E Boiled
water C

750 Hob(7) Pot 3 7350 60 0.27 21

F Boiled
water C

750 Hob(7) Pot 3 7550 55 0.18 27

3.4 SECURITY FRAMEWORK

The SAFIRE SPT Framework explores coherent system-wide security policy and

enforcement in IIoT systems. To that end it provides an expressive, dynamic, and

comprehensible security policy description and enforcement vehicle. The base

requirements are met by the policy modelling and enforcement framework expressed in

the Next Generation Access Control (NGAC) Functional Architecture and related

standards. [1]

NGAC can provide a unifying approach to policy definition and access control in a

dynamic FoF IIoT environment such as SAFIRE. It was necessary to make NGAC more

usable, so as to be deployable in more diverse environments than its past reference

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page 35

Confidentiality: Public Distribution

implementations. It was also necessary to make it more easily extensible for new kinds

of protected objects, and supportive of more complex policies and composed policies.

SAFIRE has implemented its own version of the NGAC functional architecture with

―unbundled‖ PEP and RAP. This architecture enables a more extensible implementation

of NGAC by easing the addition of new protected object kinds. Another important

feature of SAFIRE‘s version is a lightweight Policy Server that places fewer demands

on the operating environment and thus is more portable.

SAFIRE‘s NGAC implementation includes its own simple declarative policy

specification language that is easily extensible in future versions.

The ―users‖ of the SAFIRE security framework are not SAFIRE ―end-users‖ but rather

system architects and developers of SAFIRE components and client applications, as

well as system and security management administrators Normal SAFIRE end-users may

be unaware of the security functions as long as their usage of SAFIRE features is

consistent with the configured security policies. Administrative and security

management users have a role in the configuration and operation of the system. Before a

SAFIRE system is made operational there are ICT architects and application

implementers involved in the application of the Security Framework. This User Manual

section is intended to address these audiences. Consequently, this manual will also

cover the subject of integrating SAFIRE security components, along with other SAFIRE

functional components, with the underlying platform and security components of a new

or existing ICT environment that is intended to support a SAFIRE deployment.

This User Manual for SAFIRE security should be used in conjunction with the Security

Methodology section of the SAFIRE Integrated Methodology document D5.6, which

provides more background and rationale for the use of the features described in this

User Manual, and with the installation and configuration guidance for the security

framework contained in Section 4.1.4 of this document. This manual provides an update

to some of the information provided in D5.4 Full Prototype of the SPT Framework.

3.4.1 Components of the Security Framework implementation

The SAFIRE Security Framework is based on an implementation developed by The

Open Group of the NGAC standard [1]. It is very portable, with its only external

dependency being that SWI-Prolog must be available for the platform‘s operating

environment.

The functional architecture of NGAC is depicted in Figure 3-11. Components coloured

in blue are trusted components. Together these components mediate access by the Client

Application (CA) to the Protected Resources by determining and enforcing the policy

provided by security administrators.

Although they are trusted components, the Policy Enforcement Point (PEP) and the

Resource Access Point (RAP) are ―unbundled‖ from the implementation of the core

NGAC components, which include the Policy Tool and the Policy Server. Specifically,

the PEP and RAP are developed or provided by the developer of the Client Application

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page 36 Version 1.1 13 July 2020

Confidentiality: Public Distribution

to complete the Resource Access Path. Prior to using NGAC the CA would access the

resource servers directly through the Resource Access Interface. With NGAC the

Protected Resources are accessible only to the NGAC components.

Figure 3-11 NGAC - Functional Architecture

3.4.2 Declarative Policy Language

A declarative policy specification is of the form:

policy(<policy name>, <policy root>, <policy elements>).

where,

<policy name> is an identifier for the policy definition

<policy root> is an identifier for the policy class defined by this definition

<policy elements> is a list [<element>, ... , <element>]  

where each <element> is one of: 

user(<user identifier>)

user_attribute(<user attribute identifier>)

object_class(<object class identifier>, <operations>)

object(<object identifier>)

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page 37

Confidentiality: Public Distribution

object(<object identifier>, <object class identifier>, <inh>, <host name>,

<path name>, <base node type>, <base node name>)

object_attribute(<object attribute identifier>)

policy_class(<policy class identifier>)

composed_policy(<new policy name>, <policy name1>, <policy name2>)

operation(<operation identifier>)

assign(<entity identifier>, <entity identifier>)

associate(<user attribute id>, <operations>, <object attribute id>)

where <operations> is a list:

[<operation identifier>, ... , <operation identifier>]

connector(
'
PM

′
)

The initial character of all identifiers must be a lower-case letter or the identifier must be

quoted with single quotes, e.g. smith or ‘Smith‘ (identifiers are case sensitive so these

examples are distinct). Quoting of an identifier that starts with a lower-case letter is

optional, e.g. smith and ‘smith‘ are not distinct.

Additionally:  < inh > can be yes or no.

< host name> contains the name of the host where the corresponding file system object

resides.

< path name> is the complete path name of the corresponding file system object.

3.4.3 Using the ‘ngac’ Policy Tool

The ‗ngac‘ Policy Tool is a command driven application that includes the policy

language interpretation and decision logic that is also used in the Policy Server‘s Policy

Decision Point.

3.4.3.1 Developing and testing policies

A policy in the declarative policy language is just a text file containing a policy

specification as defined above. Any text editor can be used to create a policy file. By

convention, but not by necessity, the file name has the extension ―.pl‖ (which can be

remembered by the mnemonic ―policy language‖). In fact, a benefit of not using the

extension is that it is then not necessary to put the file name in single quotes when using

the ‗ngac‘ tool commands. However, in any event, an unquoted file name must start

with a lowercase letter and may only contain underscore (―_‖) and no white space. A

quoted file name does not have these restrictions, and can be any name that is

acceptable to the file system.

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page 38 Version 1.1 13 July 2020

Confidentiality: Public Distribution

The policy file may be loaded into the Policy Tool using the import_policy command.

The policy may be queried using the access command, yielding the same result that the

Policy Server would return from a Policy Query API access call. Subsequent imports of

a policy by the same name (not necessarily from a file of the same name) will replace

the loaded named policy. The cycle of edit, import, query may be repeated without

leaving the Policy Tool until the user is satisfied that the policy behaves as intended.

3.4.3.2 Policy Tool interactive commands

After starting ‗ngac‘ it offers the prompt ―ngac>‖. There are a set of basic commands

available in the normal mode (admin) and an extended set of commands for use by a

developer in development mode (advanced). Entering the command ―help‖ will list the

available commands in the current mode. Only the most commonly needed normal

mode (admin) commands are introduced here.

 access(<policy name>, <permission triple>).

Check whether a permission triple is a derived privilege of the policy.

 admin.

Switch to admin (normal) user mode.

 advanced.

Switch to advanced user mode.

 aoa(<user>).

Show the user accessible object attributes of the current policy.

 combine(<policy name 1>, <policy name 2>, <combined policy name>).

Combine two policies to form a new combined policy with the given name.

 echo(<string >).

Print the argument string, useful in command procedures.

 halt.

Exit the policy tool. (Will also terminate spawned server.)

 help.

List the commands available in the current mode.

 help(<command name>).

Give a synopsis of the named command.

 import_policy(<policy file>).

Import a declarative policy file and make it the current policy.

 newpol(<policy name>).

Set the named policy to be the new current policy.

 nl.

Print a newline, useful in command procedures.

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page 39

Confidentiality: Public Distribution

 proc(<procedure name> [, step]).

Run the named command procedure, optionally pausing after each command.

 proc(<procedure name> [, verbose]).

Run the named command procedure, optionally verbose.

 regtest.

Run built-in regression tests.

 script(<file name> [, step]).

Run the named command file, optionally pausing after each command.

 script(<file name> [, verbose]).

Run the named command file, optionally verbose.

 selftest.

Run built-in self tests.

 server(<port >).

Start the policy server on the given port number.

 version.

Display the current version number and version description.

 versions.

Display past and current versions with descriptions.

3.4.4 Using the ‘ngac-server’ Policy Server

Installation and operation of the Policy Server are described in Section 4.1.4.3.

The Policy Server offers two APIs, the Policy Query API and the Policy Administration

API.

3.4.4.1 Policy Server startup options

When a compiled version of the policy tool or the policy server is started from the

command line, several command line options (and synonyms) are recognized.

 --token, -t <admintoken> use the token make authenticated requests to the

paapi

 --deny, -d respond to all access requests with deny

 -- permit --grant -g respond to all access requests with grant

 --import --policy --load -i -l <policyfile> import the policy file

on startup

 --port --portnumber --pqport -p <portnumber> server should

listen on specified port number

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page 40 Version 1.1 13 July 2020

Confidentiality: Public Distribution

 --selftest -s run self tests on startup

 --verbose -v show all messages

The policy administration functions should not be made available to the normal object

PEPs. Rather the Policy Administration API should be accessible only to an

administratively authorised user through the policy administration tool or a process with

the same authorisation, and some functions such as setpol/getpol should be accessible

only to the ―shell‖ program that executes the NGAC client application. In this way, the

―shell‖ that controls execution of the application would also determine the user/session

and policy under which the application should execute. Only these programs should be

given the administrative token that enables calls to the Policy Administration Interface

to be made. If the token option is not specified when the Policy Server is started it will

use a default administrative token that is set in the param.pl source file. Currently this

default token is not a secret (it is ‗admin_token‘) but operating in the mode with the

default token is useful for development, testing and demonstrations.

3.4.4.2 Policy Query API

This interface is used by a Policy Enforcement Point to determine whether a client-

requested operation is supported by the associated user‘s permissions on the requested

object under a particular policy, and if the operation is permitted where may the object

be accessed through an appropriate Resource Access Point (RAP).

It is a relatively simple interface, in the form of RESTful APIs. The APIs are invoked

by making an HTTP GET request to a URL formed from the host address and a path

terminated by, e.g. ‗pqapi/access‘ and with the arguments appended to the URL with

URL-encoding after a ‗?‘ separator. To illustrate, the following curl command invokes

the access API of a Policy Server running on the local host at port 8001:

 curl „http://127.0.0.1:8001/pqapi/access?user=u1&ar=r&object=o1‟

A ―failure‖ response by one of these APIs is typically preceded by a string indicating

the reason for the failure.

pqapi/access – test for access permission under current policy
Parameters

 user = <user identifier>

 ar = <access right>

 object = <object identifier>

Returns

 ―permit‖ or ―deny‖ based on the current policy

 ―no current policy‖ if the server does not have a current policy set

Effects

 none

pqapi/getobjectinfo – get object metadata
Parameters

 object = <object identifier>

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page 41

Confidentiality: Public Distribution

Returns

 ―object=<obj id>,oclass=<obj class>,inh=<t/f>,host=<host>,

path=<path>,basetype=<btype>,basename=bname>‖

Effects

 none

An active session identifier may be used as an alternative to a user identifier in an

access query made to the Policy Query Interface.

3.4.4.3 Policy Administration API

This relatively simple interface, in the form of RESTful APIs, is invoked by making an

HTTP GET request to a URL formed from the host address and a path terminated by,

e.g. ‗paapi/getpol‘ and with the arguments appended to the URL with URL-encoding

after a ‗?‘ separator. To illustrate, the following curl command invokes the getpol API

of a Policy Server running on the local host at port 8001 using the default administrative

token to access the administration API:

 curl –G “http://127.0.0.1:8001/paapi/getpol” –data-urlencode “token=admin_token”

A ―failure‖ response by one of these APIs is typically preceded by a string indicating

the reason for the failure.

paapi/getpol – get current policy being used for policy queries
Parameters

 token = <admin token>

Returns

 <policy identifier> or ―failure‖

Effects

 none

paapi/setpol – set current policy to be used for policy queries
Parameters

 token = <admin token>

 policy = <policy identifier>

Returns

 ―success‖ or ―failure‖

 ―unknown policy‖ if the named policy is not known to the server

Effects

 sets the server‘s current policy to the named policy

paapi/add – add an element to the current policy
Parameters

 token = <admin token>

 policy = <policy identifier>

 policyelement = <policy element> only user, object, and assignment elements as defined in the

declarative policy language; restriction: only user to user attribute and object to object attribute

assignments may be added. Elements referred to by an assignment must be added before adding

an assignment that refers to them.

Returns

 ―success‖ or ―failure‖

Effects

 The named policy is augmented with the provided policy element

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page 42 Version 1.1 13 July 2020

Confidentiality: Public Distribution

paapi/delete – delete an element from the current policy
Parameters

 token = <admin token>

 policy = <policy identifier>

 policyelement = <policy element> permits only user, object, and assignment elements as de-

fined in the declarative policy language; restriction: only user-to-user-attribute and object-to-

object-attribute assignments may be deleted. Assignments must be deleted before the elements to

which they refer.

Returns

 ―success‖ or ―failure‖

Effects

 The specified policy element is deleted from the named policy

paapi/load – load a policy file into the server
Parameters

 token = <admin token>

 policyfile = <policy file name>

Returns

 ―success‖ or ―failure‖

Effects

 stores the loaded policy in the server

 does NOT set the server‘s current policy to the loaded policy

paapi/combinepol – combine policies to form new policy
Parameters

 token = <admin token>

 policy1 = <first policy name>

 policy2 = <second policy name>

 combined = <combined policy name>

Returns

 ―success‖ or ―failure‖

 ―error combining policies‖ if the combine operation fails for any reason

Effects

 the new combined policy is stored on the server

paapi/unload – unload a policy from the server
Parameters

 token = <admin token>

 policy = <policy name>

Returns

 ―success‖ or ―failure‖

 ―unknown policy‖ if the named policy is not known to the server

Effects

 the named policy is unloaded from the server

 sets the server‘s current policy to ―none‖ if the unloaded policy is the current policy

paapi/initsession – initiate a session for user on the server
Parameters

 token = <admin token>

 session = <session identifier>

 user = <user identifier>

Returns

 ―success‖ or ―failure‖

 ―session already registered‖ if already known to the server

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page 43

Confidentiality: Public Distribution

Effects

 the new session and user is stored

paapi/endsession – end a session on the server
Parameters

 token = <admin token>

 session = <session identifier>

Returns

 ―success‖ or ―failure‖

 ―session unknown‖ if not known to the server

Effects

 the identified session is deleted from the server

3.4.4.4 Dynamic Policy Change

The Policy Server does support dynamic total policy change: the ability to load new

policies, to form new policies composed of already loaded policies, and to select from

among the loaded or composed policies that policy which is to serve as the policy used

to make policy decisions. A policy selection remains in effect until a subsequent policy

selection. The server retains all of the loaded and composed policies for the duration of

its execution.

In addition, the ‗ngac-server‘ offers limited dynamic selective policy change after a

policy is loaded or formed by combining policies. The add and delete APIs provide this

capability. Details of the limitations are provided in the description of the APIs.

The current implementation of policy storage in the PIP is ephemeral. There is no

persistence of the policy database except in the original policy file(s) used to initialize

the server and the sequence of commands issued to the server to incrementally modify

policies after loading of policy files.   Policies and policy modifications should be

managed accordingly externally to the NGAC software.

3.4.4.5 Policy composition

The policy server supports two forms of policy composition. The first is achieved with

the comebinepol API. I forms the composition of policies as described in the NGAC

literature and examples.

The ‗all‘ policy composition is a distinct form of policy composition. When the policy

server‘s current policy is set to ‗all‘ through the setpol API, all currently loaded policies

are automatically combined for every access request. The manner in which the polices

are combined is as follows:  

 Every policy is first qualified to participate in computing the verdict of an access

request. To qualify a policy must be defined to have explicit jurisdiction over

both the user and the object specified in the access request. There must be at

least one qualifying policy.

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page 44 Version 1.1 13 July 2020

Confidentiality: Public Distribution

 All qualified policies are queried with the triple (user, access right, object)

specified in the access request. If any qualified policy returns ‗deny‘ then the

access request returns ‗deny‘.

Sets of policies to be combined according to the ‗all‘ policy composition should be

designed with the foregoing runtime semantics taken into consideration.

3.4.5 Policy Enforcement Point (PEP) / Resource Access Point (RAP) design pattern

Figure 3-12 highlights the PEP/RAP design pattern for the resource access path that is

part of the earlier NGAC functional architecture figure. The developer is able to

construct all of the NGAC components along the resource access path and test the

application without involvement of the NGAC server, if necessary. The necessary

components, the Policy Enforcement Points (PEP) and Resource Access Points (RAP),

are small trusted components that consist primarily of code that probably exists already

in some form within the application. The developer must extract these relatively small

bits of code from the application and place them into separate executables for PEPs and

RAPs. In some cases it may be convenient to combine the PEP and RAP into a single

executable, particularly when they are paired to deal with a single resource kind.

The PEP must invoke the Policy Decision Point (PDP) through its Policy Query

Interface to make policy-based decisions about requests for operations on resources that

a Client Application (CA) presents to the PEP.

Figure 3-12 PEP / RAP design pattern for the resource access path

3.4.5.1 Policy Enforcement, PEP-to-RAP, and Resource Access APIs

The Policy Enforcement Interfaces and interfaces between the PEP and the RAP are

under the control of the developer. The Resource Access Interfaces are those provided

by the existing Resource Servers.

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page 45

Confidentiality: Public Distribution

Our NGAC implementation provides simple examples for PEPs and RAPs that

application developers can use as guidance to add new kinds of protected resources.

3.4.5.2 Web service PEPs

Other arrangements of the PEP/RAP and resource server may be useful, for example in

the case that the resource is a Web service. In one such arrangement the PEP and RAP

are packaged with the Web service (which is the resource server in this case) and the

RAP is degenerate. In another arrangement the PEP is presented as a proxy for the

actual Web service and the RAP is packaged with the Web service. Only the proxy may

have permission to call the actual RAP and Web service. This may be accomplished by

establishing a trusted channel between the proxy PEP and the RAP.

In every case, though, however the components or the resource access path are

packaged, it is the PEP that calls the PDP and is responsible to enforce its decision. The

PEP/proxy must have a reliable way of determining the identity of the invoking CA so

that the query to the PDP is meaningful.

3.4.6 Platform protections needed to achieve non-functional properties of TOG-NGAC

Our goal in the SAFIRE project is to demonstrate a flexible attribute-based access

control scheme within the SAFIRE architecture. The prototype assumes a benign

environment without hostile actors. For deployment in a production environment, where

hostile actors must be assumed, the previously discussed platform protections for

NGAC must be implemented within the IT environment. The details of the approach to

achieve this will vary according to the specific platform hardware and software

components and choices of security controls made by the security architects and

administrators of the enterprise system that will host SAFIRE. We now discuss the

broad objectives needed to protect NGAC in a potentially hostile environment and

approaches that may be taken to achieve this.

3.4.6.1 Nonfunctional Reference Monitor properties

NGAC applies the concept of a Reference Monitor, which beyond the correctness of its

functional properties, should exhibit the nonfunctional properties: 1) that it be

tamperproof, and 2) that it must always be invoked for any operation on a protected

resource. (This property is sometimes referred to as non-bypassability.) Both of these

properties are achieved not within the reference monitor implementation itself, but by

the architecture within which the reference monitor is embedded, and by support by its

operating environment.

Tamperproofness of the NGAC implementation guarantees that the behaviour of the

reference monitor cannot be subverted. It requires that unauthorized parties can not

modify the NGAC implementation, cannot modify the source, rebuild and install the

executables, or otherwise modify the installed executables to change their behaviour.

Non-bypassability of the NGAC implementation requires that the features and

configuration of the operating environment guarantee an architecture that precludes the

possibility that any subject executing within the operating environment may access the

resources to be protected by NGAC except by a pathway in which NGAC is consulted

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page 46 Version 1.1 13 July 2020

Confidentiality: Public Distribution

to make a determination, according to its configured policy, whether or not to allow the

access, and that the parameters of such queries be reliable and unmodified in a way that

would compromise the integrity of the query, and that the verdict of that determination

is faithfully carried out (by the Policy Enforcement Point).

3.4.6.2 NGAC component and interaction integrity

The Functional Architecture of NGAC identifies a collection of components that

provide specific functions and interact in specific ways to achieve the specified

functional behaviour of the reference monitor. In addition to the integrity of the

components and of their operation, the integrity of the interactions are necessary to

guarantee the integrity of the overall operation of NGAC.

When an individual component is packaged as a unit of execution provided by the

operating environment, such as a process, then the property of process isolation and

integrity of process execution can provide integrity of the component.

When components are aggregated within a unit of execution, then the property of

process isolation and integrity of process execution can provide integrity of component

interaction. However, it is neither practical nor desirable to aggregate all the

components for a variety of reasons. For example, by factoring the functional

architecture into multiple processes, it is possible to employ the principle of

compartmentalisation to the reference monitor implementation, insulating the

components from one another and thereby reducing the complexity of each execution

unit and mitigating the damage that may result from a component failure. Further, the

weaker coupling facilitates components that are individually implementable and

maintainable.

As soon as, and to the extent that, NGAC components are allocated to distinct processes

then the interactions among the components must occur over inter-process

communication channels. Operating environments may provide inter-process

communication mechanisms that are protected by process isolation features, such as

pipes. In this case the operating environment typically provides integrated features, such

as maintaining process and object attributes and ownership, and access control features

based on those attributes, and services for identification and authentication of users in

conjunction with ownership.

However, it is often the case that components may need to run on different systems

depending upon where the subjects run and the objects are maintained. When the

processes are distributed over multiple systems the inter-process communication

involves networking. Network programming techniques have overtaken the use of

strictly local inter-process communication mechanisms in many cases, since network-

based inter-process communication, such as sockets, can be used independently of

whether the communicating processes are on the same or different systems. Such

mechanisms, such as sockets and ports, introduce new communication integrity issues

when the environment is not benign.

There are multiple approaches to achieving communication integrity using network

sockets for example, but these introduce entirely new layers of complexity and

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page 47

Confidentiality: Public Distribution

mechanisms to the setup and administration of systems that utilize secured sockets. For

example, the generation of cryptographic keys, the selection of cryptographic

mechanisms, and the distribution and management of keys are necessary.

3.4.6.3 Reliable identities

The issue of network communication integrity is entwined with the services of

identification and authentication across systems, which may be handled by entirely

separate third-party mechanisms that are merely supported by the operating system.

While the choice of identification and authentication solutions, as well as that of

network integrity solutions, and their deployment is complex, costly, and labor-

intensive to deploy, it is also routinely the province of enterprise ICT architecture and

operations departments to perform this activity, and appropriate products and techniques

are well understood by those practitioners. Consequently, on the SAFIRE project we

focused on the novel aspects of authorisation as provided by NGAC, and did not pursue

identification, authentication, identity management, cryptographic functions, and key

management, because while these are complex and costly, they are routinely handled by

an enterprise ICT department in ways that are done consistently across the enterprise as

part of the platform that hosts SAFIRE and its NGAC-based policy features. Section

4.1.4.6 provides some guidance for achieving the desired non-functional properties of

NGAC through functional requirements on its ICT environment.

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page 48 Version 1.1 13 July 2020

Confidentiality: Public Distribution

4. INSTALLATION AND CONFIGURATION OF THE SAFIRE PLATFORM

This section includes the guidelines to deploy (i.e. install and configure) the Final

Integrated Cloud Platform (FICP) of SAFIRE. The following diagram shows the

different elements and services to deploy:

Figure 4-1 SAFIRE FICP Deployment Diagram

Firstly, the section describes how to proceed with the installation of the basic

components of the SAFIRE cloud architecture, namely NiFi, Docker (including Docker

compose) and Kafka (blueish components in the previous diagram). Then, the different

subsections include guidelines for the deployment of each SAFIRE service (orange

components).

The equipment used to host the FICP is a 16 core server processor with 32 GB RAM ,

RAID 5 with 500GB for the OS and an iSCSI-connected NAS that enables a maximum

storage capacity of 12 TB. The OS installed in the server is Linux Ubuntu Bionic

18.04.1 LTS.

For the setup and configuration of the FICP environment the following resources are

required:

- an industry expert responsible for the equipment operation to configure the

equipment (either bare metal or virtualized) for the installation of the operating

system, required services and the environment of the container.

- an industry expert for operations (or development) responsible for the

containerisation of the applications, i.e. responsible for the elaboration of the

YAML files that allow the deployment of the containers.

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page 49

Confidentiality: Public Distribution

- an industry expert responsible for adapting SAFIRE ontology to each of the

business cases.

- an industry expert responsible part of the development staff responsible for the

adaptation of the data ingestion service to the specific requirements of the business

cases.

4.1 INSTALLATION AND CONFIGURATION OF THE BASIC SAFIRE ARCHITECTURE

COMPONENTS

The general architectural components to install are Apache NiFi, Docker, Apache Kafka

and the Security Framework that will run as stand-alone services in the FICP. Docker

will be used in the FICP to host the SAFIRE services.

4.1.1 Apache NiFi

NiFi is installed as a stand-alone service directly in the server. In order to install NiFi

the following steps shall be followed:

1. Download the ―tarball‖ NiFi file for Linux systems from NiFi downloads page:

https://nifi.apache.org/docs/nifi-docs/html/getting-started.html#downloading-and-

installing-nifi

2. Extract the downloaded file to a selected directory

user@ubuntu:~$ tar -xvf nifi-1.7.1-bin.tar.gz etc/safire/bin

3. Configure NiFi modifying the nifi.properties file found in the installation folder.

- Configuration best practices for linux can be found here:

https://nifi.apache.org/docs/nifi-docs/html/administration-

guide.html#configuration-best-practices

- Configuration of security parameters can be found here:

https://nifi.apache.org/docs/nifi-docs/html/administration-

guide.html#security-configuration

4. To run NiFi as a service, execute the following command from the /bin directory of

the installation:

user@ubuntu ./bin:~$./nifi.sh install

5. NiFi service can be stopped with:

user@ubuntu ./bin:~$ service nifi stop

https://nifi.apache.org/docs/nifi-docs/html/getting-started.html#downloading-and-installing-nifi
https://nifi.apache.org/docs/nifi-docs/html/getting-started.html#downloading-and-installing-nifi
https://www.apache.org/dyn/closer.lua?path=/nifi/1.7.1/nifi-1.7.1-bin.tar.gz
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#configuration-best-practices
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#configuration-best-practices
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#security-configuration
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#security-configuration

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page 50 Version 1.1 13 July 2020

Confidentiality: Public Distribution

6. NiFi service can be restarted with:

user@ubuntu ./bin:~$ service nifi start

7. Or status queried with:

user@ubuntu ./bin:~$ service nifi status

4.1.2 Apache Kafka

This section includes step-by-step guidelines to have Kafka running as a service in

Ubuntu Linux.

1. As Kafka is written in Java, JDK needs to be installed first. After updating and

upgrading a fresh installation of Ubuntu, by issuing:

user@ubuntu:~$ sudo apt update

user@ubuntu:~$ sudo apt upgrade

The user should install Standard Java or Java compatible Development Kit:

user@ubuntu:~$ sudo apt install default-jdk

2. As Kafka uses ZooKeeper for cluster manager, it has to be installed and started.

After its installation ZooKeeper will be automatically started as a daemon.

user@ubuntu:~$ sudo apt-get install zookeeperd

3. To verify the success of the installation, the tool named netstat can be used to

monitor the activity on default ZooKeeper port 2181. In Figure 4-2, an expected

output of the appropriate netstat command is presented:

user@ubuntu:~$ netstat -ant | grep :2181

4. However, netstat is not present in a fresh installation of Ubuntu 18.04 by default and

should be installed first:

user@ubuntu:~$ sudo apt install net-tools

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page 51

Confidentiality: Public Distribution

Figure 4-2 Confirmation of the successful ZooKeeper instalation with netstat

5. Kafka can be downloaded to e.g. folder kafka in the home directory from Apache

website using wget:

user@ubuntu:~$ mkdir kafka && cd kafka && wget

http://apache.mirrors.nublue.co.uk/kafka/1.1.0/kafka_2.12-1.1.0.tgz

6. Decompress the downloaded file:

user@ubuntu:~$ tar -xvf kafka_2.12-1.1.0.tgz && cd kafka_2.12-1.1.0

7. And start the service:

user@ubuntu:~$ sudo bin/kafka-server-start.sh config/server.properties

Due to a bug in the latest version in the script located in bin/kafka-run-class.sh

Kafka may not start properly with Java 9, what is shown in Figure 4-3. In this situation,

one line in file bin/kafka-run-class.sh needs to be modified from:

JAVA_MAJOR_VERSION=$($JAVA -version 2>&1 | sed -E -n 's/.* version

"([^.-]*).*"/\1p')

To:

JAVA_MAJOR_VERSION=$($JAVA -version 2>&1 | sed -E -n 's/.* version

"([^.-]*).*/\1p')

i.e. the second quotation mark needs to be removed.

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page 52 Version 1.1 13 July 2020

Confidentiality: Public Distribution

Figure 4-3 Possible unsuccessful execution of Kafka with Java 9

8. Successful execution of Kafka can be confirmed by creating a testing topic, e.g.

with:

user@ubuntu:~$ bin/kafka-topics.sh --create --zookeeper localhost:2181

--replication-factor 1 --partitions 1 --topic testing

which should be notified with information Created topic "testing" (see Figure 4-4).

Figure 4-4 Creation of a topic in Kafka

9. The Kafka topics can be listed using the following command:

user@ubuntu:~$ bin/kafka-topics.sh --list --zookeeper localhost:2181

as shown in Figure 4-5.

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page 53

Confidentiality: Public Distribution

Figure 4-5 Listing Kafka topics

10. A console-based Kafka producer can be created using the command:

user@ubuntu:~$ bin/kafka-console-producer.sh --broker-list

localhost:9092 --topic testing

whereas the corresponding consumer with:

user@ubuntu:~$ bin/kafka-console-consumer.sh --zookeeper

localhost:2181 --topic testing --from-beginning

what is shown in Figure 4-6 and Figure 4-7, respectively.

Figure 4-6 Creating Kafka producer in a console

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page 54 Version 1.1 13 July 2020

Confidentiality: Public Distribution

Figure 4-7 Creating Kafka consumer in a console

4.1.3 Docker, Docker Compose and Docker Registry

Docker (https://www.docker.com) is a platform that can run in bare-metal or virtualised

servers and allows the creation and management of application containers. A container

is a lightweight, standalone, executable package of software that includes everything it

needs to run an application. Containers are volatile, meaning that data and states are not

stored unless specific volumes are created for the containers.

All SAFIRE services are deployed in a docker host as docker containers together with

their associated volumes. Additionally, other general-purpose services (such as Kafka)

are also be deployed as containers in the full integrated cloud prototype. Since most of

SAFIRE services are multi-container docker applications, it is necessary to install

Docker Compose.

Containers executed in a docker host must be previously registered either in a public or

a private registry, so it is be necessary to understand how to reach the registry, create

images in it and make use of them when necessary.

The present section shows the steps required to install docker and docker compose, and

how to manage the images from the container registry (available in of GitLab repository

the project).

https://www.docker.com/

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page 55

Confidentiality: Public Distribution

4.1.3.1 Docker

The Docker Community Edition (Docker CE) for Ubuntu is manually installed after

downloading the latest available package from:

https://download.docker.com/linux/ubuntu/dists/bionic/stable/

1. To install docker and automatically execute it as a daemon, execute the following

command in the desired path:

user@ubuntu ./docker:~$ sudo dpkg -i package.deb

2. Verify the installation by running the hello-world image included:

user@ubuntu ./docker:~$ sudo docker run hello-world

3. Configure docker to start as a service on every new boot with:

user@ubuntu ./docker:~$ sudo systemd enable docker

4.1.3.2 Docker Compose

In order to install Docker Compose the following steps shall be followed:

1. Run this command to download the latest version (available in Compose repository

release page on GitHub) of Docker Compose:

user@ubuntu:~$ sudo curl -L "https://github.com/docker/.../docker-

compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

2. Apply executable permissions to the binary:

user@ubuntu:~$ sudo chmod +x /usr/local/bin/docker-compose

3. Test the installation:

user@ubuntu:~$ docker-compose --version

It should retrieve the docker-compose version installed.

https://download.docker.com/linux/ubuntu/dists/bionic/stable/
https://github.com/docker/compose/releases
https://github.com/docker/compose/releases

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page 56 Version 1.1 13 July 2020

Confidentiality: Public Distribution

4.1.3.3 Docker Container Registry

As mentioned, all SAFIRE Services will be deployed as containers. Deployment will be

made from a common repository of containers (public docker registry) available from

the project‘s GitLab. To manage images, the user must login first:

user@ubuntu:~$ sudo docker login ikerlan.githost.io:4678

Once logged in, the user can create images:

user@ubuntu:~$ sudo docker build -t ikerlan.githost.io:4678/public-

repos/<name-of-service>

Or update them:

user@ubuntu:~$ sudo docker push ikerlan.githost.io:4678/public-

repos/<name-of-service>

Each SAFIRE Service has its own docker-compose.yml file, which indicates the

source of the necessary images for the service to operate. To deploy each service simply

execute the following command from each the folder of each SAFIRE Service:

user@ubuntu:~$ docker-compose up

4.1.4 Security Framework

This installation and configuration guide provides an update to and elaboration of some

of the related information in D5.4 Full Prototype of the SPT Framework.

4.1.4.1 Prerequisites and Dependencies

The ‗ngac‘ Policy Tool and the ‗ngac-server‘ Policy Server are implemented in the

Prolog language and require the SWI-Prolog environment to run. SWI-Prolog is

available for several operating environments, including Microsoft Windows (64 bit) and

(32 bit), MacOS X 10.6 and later on Intel, and several Linux versions including Ubuntu.

It is also available in Docker containers and as a source distribution that one can build

locally.

Our NGAC implementation uses only the libraries that come with the SWI-Prolog

distribution. Furthermore we‘ve organised the functional architecture so as to place

adaptation into the hands of application developers without requiring modification to

the core implementation. This is in contrast to past reference implementations that have

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page 57

Confidentiality: Public Distribution

had many external dependencies (some now obsolete) so that they were very

cumbersome to work with and not very portable or adaptable.

SWI-Prolog is available from www.swi-prolog.org; we are currently using version

8.0.3. The installation and build instructions below include the installation of SWI-

Prolog.

4.1.4.2 Installation and build

The TOG-NGAC software is provided as a set of Prolog source files from which can be

built an ―executable‖ that has the compiled code packaged with the Prolog runtime

environment. The shell script mkngac compiles the code and creates the executables for

the ‗ngac‘ Policy Tool and for the ‗ngac-server‘ Policy Server. To build the executables

requires that the SWI-Prolog environment is installed. The executable is not distributed

since it should be created in the target environment.
2
 An executable may be deployed to

other systems that offer the same target environment.

The following elements shall be installed and configured:

1. Install SWI-Prolog stable version from Linux Ubuntu Personal Package Archive

(http://www.swi-prolog.org/build/PPA.html

user@ubuntu:~$ sudo apt-get install software-properties-common

user@ubuntu:~$ sudo apt-add-repository ppa:swi-prolog/stable

user@ubuntu:~$ sudo apt-get update

2. Install the NGAC source files. The current version of the ‗ngac‘ software consists

of a directory tree including source files, example policy files, example data files,

and test files. The distribution is provided as a zip file available from SAFIRE‘s

GitLab repository.

3. Build the NGAC executables. In the root directory of the TOG-NGAC release run

the shell script mkngac.

user@ubuntu:~$ chmod +x /ngac/directory/

user@ubuntu ngac/directory:~$./mkngac

A listing of the directory should show that new ‗ngac‘ and ‗ngac-server‘ files have

been created. These files are shell scripts that should be given execute permission.

2
 If the distribution should be found to contain copies of ‟ngac‟ and „ngac-server‟ these

should be discarded and rebuilt.

http://www.swi-prolog.org/
http://www.swi-prolog.org/build/PPA.html

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page 58 Version 1.1 13 July 2020

Confidentiality: Public Distribution

4.1.4.3 Testing and Using NGAC

4. Initiate the ‘ngac’ Policy Tool. The executable can be executed directly from a

command shell prompt.

user@ubuntu:~$ chmod +x /ngac/directory/ngac

user@ubuntu:~$ cd /ngac/directory

user@ubuntu ngac/directory:~$ ngac

The ‗ngac‘ prompt ―ngac> ― should appear. Note that ‗ngac‘ commands entered at

this prompt should be terminated with a full stop (―.‖).

5. Test the installed NGAC tool. The ngac tool has built in self-tests to ensure that the

algorithms are working correctly. Start self-test executing the following command in

NGAC‘s command line:

ngac> selftest.

All tests run should indicate success (the expected result was detected).

6. NGAC installation can also be tested by executing the example procedures found in

the ―procs.pl‖ file, or by adding new procs there, and then running:

ngac> proc(MyProc).

or

ngac> proc(MyProc, verbose).

7. Import one or more policy files:

ngac> import(policy(PolicyFileName)).

where PolicyFileName is the name of the policy language .pl file relative to the

execution directory. Place the PolicyFileName in single quotes if it begins with a non-

lowercase letter or contains punctuation other than underscore (―_‖).

8. Select a previously imported policy to be the current policy using the command
newpol.

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page 59

Confidentiality: Public Distribution

ngac> newpol(PolicyName).

where PolicyName is the name of the policy occurring in the policy specification

contained in the policy file (it is not the file name).

9. Queries to determine whether a particular user may perform a particular operation

on a particular object may be run against the current policy using the access

command.

ngac> access(PolicyName, (User,Op,Object)).

where (User,Op,Object) is a permission triple to be checked against the named

policy.

10. See all available ‗ngac‘ commands by entering the command help or get further

details on a single command using the command help(CommandName).

ngac> help(access).

11. Start the Policy Server using the command server(PortNumber).

ngac> server(PortNumber).

where PortNumber is an unused TCP port number.

12. Alternatively, start the Policy Server directly, apart from the ‗ngac‘ Policy Tool, by

executing the ‗ngac-server‘ file with chosen command-line options.

user@ubuntu ngac/directory:~$ ngac-server –p PortNumber -i PolicyFile-

Name

This is the preferred way to initiate the server for production use. Consult the user

manual for the command-line options available when starting the server in this way.

Options include those shown here for specifying a port and loading of a policy, or

setting the current policy to a built-in ‗grant‘ or ‗deny‘ policy that always returns ‗grant‘

or ‗deny‘ (respectively) to any access query.

13. Test the running Policy Server (started by either of the methods above) by running

the shell script servercurltest.sh found in the TEST subdirectory. This script

sends a sequence of requests to the server to test for known correct answers. The

script serverCombinedtest.sh also found in the TEST subdirectory tests a

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page 60 Version 1.1 13 July 2020

Confidentiality: Public Distribution

composed policy example. The script uses the curl utility to form and send the

requests to the server‘s Web APIs.

The Policy Server is typically used by first configuring its policy, either through the

command line option or using the Policy Administration Interface, and then by creating

Policy Enforcement Points that query the Policy Query Interface for individual access

requests made to the PEP by a client application.

4.1.4.4 Operation of the Policy Server

For productions use, the Policy Server executable may be started directly by an

initialisation script that invokes it, along with chosen command line options, in the

background (e.g. using a ‗&‘ in a shell script). The server logs messages to its standard

output stream, which may be redirected to a file if desired.

4.1.4.5 Configuration of NGAC

TOG-NGAC can be easily extended in several ways.

 Commands can be added to the ‗ngac‘ Policy Tool by modifying the command

module to add syntax, semantics (optional), help, and do clauses for the

new command. A syntax clause must be added for the command. This clause

declares the command name and parameters, and what mode the command

belongs to, admin or advanced. Admin commands are available in admin mode,

but also accessible in the advanced mode but not vice versa.

 The self-test framework is implemented in the test module. Tests for specific

new modules can be added in the TEST subdirectory. An example of a test

definition file for the spld module is implemented in TEST/spld_test.pl.

 New predefined ‗ngac‘ command procedures can be added to the procs

module. A proc clause is added for each new procedure to be defined. There

are examples in the procs.pl file.

Global parameters are set in the param module. Settable parameters (those that can be

changed from the ‗ngac‘ command line with the set command) are itemized in the list

settable_params. Adding new settable parameters requires the new parameter

name to be added to this list and to the dynamic directive above it in a fashion similar

to the other entries.

4.1.4.6 Guidance for achieving non-functional properties for TOG-NGAC

Earlier in the User Manual, section 3.4.6, we discussed the non-functional requirements

of an NGAC deployment in a non-benign environment. NGAC‘s non-functional

properties may be achieved through functional requirements on NGAC‘s operating

environment.

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page 61

Confidentiality: Public Distribution

Operating Environment Protections

Since NGAC is not a native feature of the operating environment, it is dependent on

basic features of the operating environment for it‘s operational integrity within a

computer system. Such features include:

 File system attributes, ownership, and permissions

 Process isolation and integrity

When components of the NGAC functional architecture are packaged together within a

process, as are the PDP, PAP, and PIP components within the Policy Server, the

operating environment‘s process isolation features are relied upon to prevent tampering

with the running process and to protect intra-process communication among the

components.

When components of the NGAC functional architecture access resources to which

NGAC is mediating access, for example, a RAP accessing a local file through the file

system interfaces, the file system access controls are leveraged. This is done in a very

simple and fixed way, to limit access to the files exclusively to the NGAC components,

and the RAP in particular. This delegates the flexibility of access control to the unified

NGAC mechanism and the policies with which it is configured. This may be achieved,

for example, by setting the ownership of the protected resources to a unique ngac-rap

owner and by setting the executable containing the RAP (may be bundled with a PEP)

to be set UID (set user ID on execution attribute of the file containing the executable) to

the user ngac-rap. Since the PEP-RAP combination, invoked for resource operations by

a client application (CA), is protected by process isolation, and since the PEP consults

the Policy Server‘s PDP before carrying out a resource operation, the access to the

resource by the CA is effectively mediated by NGAC.

Trusted Channels

By using TCP sockets for the inter-component interactions among process units in our

implementation of NGAC, such as between a CA and a PEP and between the PEP and

the Policy Server, we have set the stage for the extension to NGAC of enterprise

solutions for establishing trusted channels among processes on the same or different

systems. We defer to the enterprise ICT department for the choice and deployment of

features to provide communication integrity in non-benign environments.

Identities of Users and Objects

When a solution for inter-system identity, authentication, and secure communication

has been selected and deployed, the user identities within the identity management

system should be reconciled with the users and objects declared and used in NGAC

policies.

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page 62 Version 1.1 13 July 2020

Confidentiality: Public Distribution

4.2 INSTALLATION AND CONFIGURATION OF THE SAFIRE DASHBOARD

The SAFIRE dashboard aims to allow the user to observe the operation of the different

services of the platform. For each of the main modules of the platform, namely the

Situation Determination (SD), the Predictive Analytics (PA), the Optimisation Engine

(OE) and the Security Framework (SPT), a card-like screen appears in the main screen

of the dashboard, showing live information coming from the running services of the

modules to provide real-time monitoring of their operations while embedded within an

industrial environment.

It is worth noting that in addition to the dashboard for real-time monitoring of the main

modules operations, each of the main modules provides interfaces (e.g. Apache

Zeppelin for PA, modelling languages for SD and OE, declarative policy language for

SPT, etc.) for interacting with specific discipline and skill set experts within

manufacturing organisations that set-up, configure, analyse data, undertake the

modelling, define the security policies, and prepare the SAFIRE platform to be

embedded as a plugin within a particular manufacturing system, factory process control

system or smart product according to the SAFIRE integrated methodology (see

deliverable D5.6 for details). These industrial applications utilise the outputs from the

embedded SAFIRE components to present results in the form of optimisations and

reconfigurations to the respective end users of the industrial systems in a customised

manner consistent with the look and feel of the respective industrial applications. For

some applications, SAFIRE will be fully transparent with the end users (e.g. operator)

of an industrial system seeing only the system running 20% faster or utilising less raw

materials, or being informed at more opportune times that a maintenance operation

should be taken in order to increase overall utilisation, as compared to before the

SAFIRE platform plugin was enabled.

In order to install and run the SAFIRE dashboard the same procedure for installing and

running any other SAFIRE docker image, as described before in section 4.1, should be

followed. The kafka messaging system should run already prior to starting the

dashboard service, since the dashboard observes the messages exchanged between the

modules. For each one of the modules, a dedicated kafka topic is being used (namely

SAFIRE_DASHBOARD_SD for the SD module, SAFIRE_DASHBOARD_PA for the

PA module, SAFIRE_DASHBOARD_OE for the OE module,

SAFIRE_DASHBOARD_SPT for the SPT module) where the modules publish their

operations statuses and results. The messaged published in those topics have the

following json structure:

{

 "ServiceId": "number_Id_of_the_module"

 "ServiceName": "name_of_the_module",

 "ServiceStatus": "module_event_status",

 "ServiceMessage": "event_message ",

 "TimeStamp": "datetime_of_the_event"

}

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page 63

Confidentiality: Public Distribution

An example of a json message for each one of the modules, in the related kafka topic,

follows:

 SAFIRE_DASHBOARD_SD

{

 "ServiceId": "1",

 "ServiceName": "Situation Determination",

 "ServiceStatus": "monitoring",

 "ServiceMessage": "The message [monitoring] just received",

 "TimeStamp": "08.08.2019 03:23:09"

}

 SAFIRE_DASHBOARD_PA

{

 "ServiceId": "2",

 "ServiceName": "Predictive Analytics",

 "ServiceStatus": "waiting",

 "ServiceMessage": Predictive Analytics is waiting for a new request",

 "TimeStamp": "08.08.2019 03:23:10"

}

 SAFIRE_DASHBOARD_OE

{

 "ServiceId": "3",

 "ServiceName": "Optimisation Engine",

 "ServiceStatus": "optimisation requested",

 "ServiceMessage": Optimisation Engine is optimising",

 "TimeStamp": "08.08.2019 03:18:36"

}

 SAFIRE_DASHBOARD_SPT

{

 "ServiceId": "4",

 "ServiceName": "Security Privacy Trust",

 "ServiceStatus": "access denied",

 "ServiceMessage": "Security [access denied]",

 "TimeStamp": "08.08.2019 03:23:12"

}

Figure 4-8 SAFIRE Dashboard Screenshot shows the SAFIRE dashboard on a test

execution.

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page 64 Version 1.1 13 July 2020

Confidentiality: Public Distribution

Figure 4-8 SAFIRE Dashboard Screenshot

4.3 INSTALLATION AND CONFIGURATION OF DATA INGESTION AND MONITORING

SERVICES

The full prototype of the integrated cloud platform implements a MQTT brokerage

service to gather data directly from the connected devices and push them into the NiFi

service. The final version of the cloud platform implements specific interfaces to the

data repositories of each pilot, where data from the different devices are conveniently

stored. The configuration of the access to each pilot‘s repository is described in Section

3.1.

4.4 INSTALLATION AND CONFIGURATION OF THE PREDICTIVE ANALYTICS

SERVICE

The Predictive Analytics Service in the FICP is deployed as a docker application with

several containers, including specific volumes to persist configuration data and data in

Cassandra and PostgreSQL data bases.

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page 65

Confidentiality: Public Distribution

Figure 4-9 Deployment diagram of the Predictive Analytics Service

In order to deploy the Predictive Analytics service in the FICP, the following steps are

followed:

1. Obtain the Predictive Analytics image from the registry:

user@ubuntu:~$ sudo docker pull ikerlan.githost.io:4678/public-

repos/safire-predictive-analytics

2. Deploy the service with docker-compose:

user@ubuntu:~$ docker-compose up

4.5 INSTALLATION AND CONFIGURATION OF THE SITUATIONAL AWARENESS

SERVICES

Situational Awareness is deployed in the FICP as two Docker applications (Situation

Monitoring and Situation Determination) with several containers, including specific

volumes to persist XML configuration data and data in a H2 Database.

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page 66 Version 1.1 13 July 2020

Confidentiality: Public Distribution

Figure 4-10 Deployment diagram of the Situational Awareness service

In order to deploy these services in the FICP, the following steps are followed:

1. Obtain the images of the business case specific situation monitoring and

determination services from the registry ($bc shall be substituted by one of the

respective business cases oas, ona or electrolux:

user@ubuntu:~$ docker pull gitlab.atb-bremen.de:5555/safire/situation-

monitoring-$bc

user@ubuntu:~$ docker pull gitlab.atb-bremen.de:5555/safire/situation-

determination-$bc

2. Before executing the services, they are configured in a common XML configuration

file. An example for such a configuration is included below:

<?xml version="1.0" encoding="utf-8"?>
<config xmlns="http://www.atb-bremen.de"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <services>
 <service id="Monitoring">
 <host>localhost</host>
 <location>http://localhost:19001</location>
 <name>MonitoringService</name>
 <server>de.atb.context.services.MonitoringService</server>
 <proxy>de.atb.context.services.IMonitoringService</proxy>
 </service>
 <service id="MonitoringRepository">
 <host>localhost</host>
 <location>http://localhost:19002</location>

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page 67

Confidentiality: Public Distribution

 <name>MonitoringDataRepositoryService</name>
 <server>de.atb.context.services.MonitoringDataRepositoryService</server>
 <proxy>de.atb.context.services.IMonitoringDataRepositoryService</proxy>
 </service>
 <service id="SituationDeterminationService">
 <host>localhost</host>
 <location>http://localhost:19004</location>
 <name>ContextExtractionService</name>
 <server>de.atb.context.services.ContextExtractionService</server>
 <proxy>de.atb.context.services.IContextExtractionService</proxy>
 </service>
 <service id="SituationDeterminationRepositoryService">
 <host>localhost</host>
 <location>http://localhost:19005</location>
 <name>ContextRepositoryService</name>
 <server>de.atb.context.services.ContextRepositoryService</server>
 <proxy>de.atb.context.services.IContextRepositoryService</proxy>
 </service>
 </services>
</config>

3. After downloading the container image, and configuring the services, they can be

started in isolated containers using the command ―run‖. By using this command

there is the possibility to add a restart policy to allow automatic restart of the

services after failure as mentioned bellow:

user@ubuntu:~$ docker run –restart unless-stopped situation-monitoring

user@ubuntu:~$ docker run –restart unless-stopped situation-

determination

4.6 INSTALLATION AND CONFIGURATION OF THE OPTIMISATION ENGINE

In this section, the process of building a container out of the optimisation engine

sources, as stored in the SAFIRE public repository named "optimisation-engine", is

described.

Fitness function evaluator, being a part of OE, is almost entirely stateless. In particular,

the information about factory architecture, available recipes or ordered commodities is

not stored in OE, but sent as a message triggering the optimisation process by the SD

module instead. The only element that needs to be configured is related to security. As

OE needs to communicate with the SPT Framework to check the access rights of each

incoming optimisation request, the location of the NGAC server needs to be provided. It

is done by using two string variables: ipAddress and port. The access right to be

forwarded to the NGAC server is stored in string variable ar and the OE service name

as an object in the SPT Framework is stored in the UoYOptimisationEngine class in

package uk.ac.york.safire.optimisation.mitm.atb, as shown below.

public final static String ipAddress = "127.0.0.1";

public final static String port = "8001";

public final static String ar = "r";

public final static String object = "oe";

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page 68 Version 1.1 13 July 2020

Confidentiality: Public Distribution

As the optimisation engine has been written in both the Scala and Java programming

languages, the most popular open-source build tool for these languages is used, named

"sbt". It requires Java 1.8 or later. The build instructions are given in the "build.sbt" file

which ensures that the Docker image is built with all necessary dependencies. If one

intends to use this file to compile the project, the following commands need to be

issued:

user@ubuntu:~$ sbt clean

user@ubuntu:~$ sbt compile

To create a runnable jarfile, the project needs to be packaged with the command:

user@ubuntu:~$ sbt package

The class to be executed in the jarfile is specified in the "build.sbt" file. For example, to

create an executable jarfile containing a remotely-invokable OE module, the following

line should be uncommented:

mainClass in Compile := Some

("uk.ac.york.safire.optimisation.HttpRemoteOptimisationEngineServer")

In the repository, there is the file named "dockerize.sh". When executed, it dockerizes

the executable jarfile, executing the following command

docker run --rm -p8080:8080 safire-optimisation-engine:0.4-snapshot

where "safire-optimisation-engine:0.4-snapshot" is the image name, derived

from that of the executable jarfile.

The OE service is Business Case dependant and the corresponding FFs are hardcoded.

However, the generic solution to build a customised FF for a smart factory or device

based on its human-writable description is available using Factory Description

Language (FDL) as explained in deliverable D5.6. The FDL description extracts for the

three SAFIRE BCs are provided in section 3.3 in this deliverable.

 D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

13 July 2020 Version 1.1 Page 69

Confidentiality: Public Distribution

5. CONCLUSIONS

The Final Integrated Cloud Platform (FICP) completes the previous early version with

the description of the full prototype of the SAFIRE services, as well as with details for

the configuration and installation of the different modules in the business case site.

The SAFIRE integrated cloud platform consists of the four main SAFIRE services,

namely the Predictive Analytics (PA), the Situation Determination (SD), the

Optimisation Engine (OE) and the Security Framework (SPT), and its operation is being

monitored using the dashboard. All the modules have been developed using latest open

source technologies, adequate for big data management in an industrial environment,

and have been packaged using docker in order to be directly deployable in different

operating systems. The data transfer within the SAFIRE modules and outside to its

environment (and the business case legacy systems) is being utilised using NiFi

templates. The communication between the modules has been established using the

kafka messaging system. This technology is also being used by the dashboard to

visualise the results of the module during the SAFIRE operation.

For each of the three business cases, for Electrolux, OAS and ONA, the SAFIRE

integrated cloud platform has been configured and connected or integrated with the

legacy systems for data exchange and process management. User installation and

configuration guidelines have been provided to allow future users of SAFIRE to

integrate the platform into their systems.

As future work after the end of the project, the SAFIRE consortium aims to continue

testing and adjusting the operation of the platform to the respective business case needs

in order to validate its operation and identify potential new opportunities for adjustment

and expansion, inside and outside the selected business cases and their clients.

D5.8 Final Integrated Cloud Analysis and Reconfiguration Platform

Page 70 Version 1.1 13 July 2020

Confidentiality: Public Distribution

6. REFERENCES

[1]. InterNational Committee for Information Technology Standards (INCITS). Information

technology—Next Generation Access Control—Functional Architecture (NGAC-FA),

INCITS 499-2018, ANSI 2018.

