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EXECUTIVE SUMMARY 

The document presents the final specifications of the Predictive Analytics Platform and, 

as stated in the technical annex of the project, is an incremental update of the 

deliverable D2.2 Early Specification of Predictive Analytics Platform.  

The deliverable contains (a) a review of current big data and predictive analytics 

techniques, (b) a summary of innovations to be developed in the project, (c) 

specifications for the component are defined, tracing them back to the requirements 

stated in previous deliverables, (d) a classification of the specifications according to the 

requirements they handle (general requirements, cross-component requirements and 

industrial business case requirements) and finally (e) a list of software tools to be used 

in the development of the software components. 
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1. INTRODUCTION 

1.1 DOCUMENT PURPOSE  

The current document presents the deliverable D2.5 – Final Specification of Predictive 

Analytics Platform, of the project SAFIRE - Cloud-based Situational Analysis for 

Factories providing Real-time Reconfiguration Services. This document was compiled 

by enhancing D22 Early Specifications of Predictive Analytics Platform with additional 

contents to produce a self-contained final deliverable D2.5 - Specifications of Predictive 

Analytics Platform 

The work described here is part of the T2.2 Specification of Predictive Analytics 

Platform for the WP2 – Predictive Analytics Platform. The objective of task T2.2 is to 

address specific problems and requirements collected within WP1, through the 

specification of the architectural design decisions for the SAFIRE platform for real-time 

big data analytics. 

 

1.2  PROGRESS BEYOND D2.2 EARLY SPECIFICATION OF PREDICTIVE ANALYTICS 

PLATFORM 

This final specification document is a follow-up to “D2.2 Early Specification of 

Predictive Analytics Platform”. This section outlines the main additions to that 

specification: 

 Specification of the Predictive Analytics Platform Module regarding the 

dimensions of data quality. 

 Specification of the Predictive Analytics Platform Module regarding the 

compliance of big data technologies to the European General Data Protection 

Regulation (GDPR).  

 Enhanced specification of available machine learning algorithms and core 

concepts of Spark available for Predictive Analytics Platform. 

 Update the requirements coverage table in Section 7. 

 Specification of the Predictive Analytics Prediction REST Web Service. 

 Description of Source Code templates for Predictive Analytics Prediction REST 

Web Service Clients development to be developed in the full prototype. 

 Specification of testing to be done in business cases with the full prototype. 
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1.3 APPROACH APPLIED 

The Final Specification of Predictive analytics presented here is the result of a process 

already started in SAFIRE Concept and the following previous deliverables: 

 D1.1 Application Scenarios Requirements Analysis.  

 D1.2 Optimisation Metrics and Benchmarking.  

 D1.3 Business Cases Infrastructure Specification. 

 D1.4 SAFIRE Concept. 

 D2.2 Early Specifications of Predictive Analytics Platform. 

In short, the steps followed to compile this deliverable were as follows: 

 First, predictive analytics requirements specified by industrial business cases, 

cross components requirements and general requirements for a predictive 

analytics platform have been analysed. 

 Next, a review of existing technologies in big data and predictive analytics has 

been conducted, trying to focus the research in the requirements described above. 

 Finally, the early specifications deliverable has been enhanced with additional 

specifications to finally produce this deliverable. 

The structure of the document is organized as detailed below: 

 Section 1, Introduction - Includes a concise overview of the overall content of 

the document, mentioning; document purpose, progress beyond D2.2, approach to 

produce this document and structure of the document. 

 Section 2, Background of Existing Technologies - Provides an introduction to 

the state-of-the-art in big data, predictive analytics techniques and some related 

EU projects. 

 Section 3, Innovations - Provides a summary of innovations developed in 

Predictive Analytics Platform module. 

 Section 4, Predictive Analytics Platform Module Specifications - Provides a 

description of the specifications, classified according to the requirements they are 

handling: general requirements, cross-components requirements and industrial 

business cases requirements. And presents a high-level architectural design of the 

full prototype. 

 Section 5, Technology Specification of Software Tools - Provides a list of 

software tools that can be used in the component. 

 Section 6, Full Prototypes feature set - Provides a list of features available on 

the Full Prototype. 

 Section 7, Requirements coverage - Provides a detailed coverage of each BC 

requirement.  
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 Section 8, Conclusions - Finally, this section provides a brief final summary of 

the document. 

 Section 9, References - References are depicted in this section. 

 

2. BACKGROUND OF EXISTING TECHNOLOGIES 

Predictive Analytics is a broad set of techniques ranging from statistics to machine 

learning with the aim of analyzing data (historical data, real-time data, data traces, etc...) 

in order to, for example, predict future values of the data, find relationships or discover 

behavioural patterns. 

In this context, big data analytics is the process of applying predictive analytics to very 

large datasets to uncover hidden patterns, unknown correlations, customer preferences 

and other useful business information. Big data analytics has been successfully applied 

to real world industrial use cases, bringing in a number of benefits related to advanced 

manufacturing. Nowadays, the main focus is to obtain predictions using real-time 

techniques. As a case in point, maintenance predictions derived from real-time data 

analytics of worldwide operating products and operating systems is a reality on many 

industrial domains. 

Sections below analyse background of existing technologies along four main axes: 

 Big Data Frameworks. 

 Analytical Techniques background. 

 Predictive Analytics Software. 

 Related EU Projects. 

 

2.1 BIG DATA FRAMEWORKS 

Big data frameworks enable organizations to store, manage and manipulate vast 

amounts of disparate data. The Hadoop File System [1] (HDFS) is the de facto standard 

framework that allows massive data storage in its native form to speed up analysis and 

insight. The Hadoop framework implements its own approach to programming 

distributed computing, called Map Reduce [1]. There are many pure Hadoop providers 

such as Cloudera, Hortonworks, MapR, Pivotal or TeraData that integrate Hadoop with 

other frameworks for a complete solution. On the other hand, the biggest cloud 

providers (Amazon AWS [2], Google Cloud [3], and Microsoft Azure [4]) offer 

complete elastic solutions with a pay-per-use business model. Moreover, companies 

such as IBM [5], SAP [6], and GE [7] also offer global solutions for industry on a single 

platform that combines these technologies with tools for predictive analytics. 
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Apart from HDFS, the organizations that require real-time access to their big data 

warehouse use NoSQL databases such as MongoDB [8] and Cassandra [9] which are 

compatible with the Hadoop ecosystem and being horizontally scalable too. NoSQL 

databases are present nowadays as an alternative to HDFS on big data systems where 

the data is frequently accessed in real-time [10][11]. Nevertheless, this kind of 

databases do not have the query capabilities of the SQL ones leading to the 

development of NewSQL [12] databases that have both the scalability of NoSQL and 

the query capabilities of SQL databases. 

Moreover, organizations require Analytics to gain insights in their data. Predictive 

Analytics use data mining analytics, as well as predictive modelling to anticipate what 

will likely happen in the future based on insights gained through descriptive and 

diagnostic analytics. The ability to predict what is likely to happen next, is essential to 

improve the overall performance of manufacturing systems, especially product 

operations such as maintenance and utilisation. Using machine learning techniques, 

patterns can be found in historical operational data and real-time data to signal what is 

ahead. Lee et al. [13] describe recent advances and trends in predictive manufacturing 

systems in big data and cloud environment manufacturing. 

Beyond the Hadoop approach for batch analytics, real-time capable processing 

frameworks such as Flink [14] or Spark [15] have been adopted quickly as an 

alternative to Map Reduce. These new approaches claim to be 100 times faster than 

Hadoop because of their in-memory processing capabilities. Spark and Flink provide a 

unique engine for batch and real-time big data analytics, simplifying the operation and 

maintenance of the system. Furthermore, they are interoperable with the wider Hadoop 

ecosystem providing specific libraries for machine learning. 

These kinds of platforms are usually deployed following the so-called Lambda 

Architecture [16]. However, a Lambda Architecture is inherently complex as batch data 

and real-time data are processed on different paths. For this reason, the Kappa 

Architecture [17] was born as an effort to simplify the architectures of real-time big data 

platforms. More recently, the NoLambda [18] Architecture was designed combining 

streaming, machine learning and batch analytics in a simpler way. 

Finally, operating a big data analytics platform usually involves dealing with a lot of 

computing resources; therefore, using some kind of resource manager greatly improves 

the performance. Historically, the Yarn [19] resource manager has been employed for 

Hadoop workloads. Nevertheless, new resource managers, such as Mesos [20], have 

been employed in production by many companies (e.g. Twitter, Apple, Netflix, Paypal), 

as they are capable of dealing with Hadoop and other kinds of workload. The maturity 

of Mesos has led to the concept of Data Centre Operating System [21]. 

 

2.2 ANALYTICAL TECHNIQUES BACKGROUND 

Predictive Analytics [22] is based in a variety of techniques that basically, can be 

classified into two groups: 
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 Regression Techniques - These techniques try to find a mathematical 

relationship between the input variables and the output variables. Main 

techniques in this group include, among others: 

o Linear Regression. 

o Logistic Regression. 

o Multinomial Logistic Regression. 

o Time Series Models. 

o Decision Trees / Random Forest Trees. 

o Multivariate Adaptive Regression Splines. 

 Machine Learning Techniques – These techniques, developed in the artificial 

intelligence community, include, among others: 

o Deep Learning algorithms / Neural Networks. 

o Support Vector Machines (SVM). 

o Naive Bayes  (Bayesian Algorithms). 

o Clustering Algorithms. 

In the following sections, each of these techniques will be described very briefly so that 

the reader can have a minimal background and a link to a resource with more 

information.  

However, an in-depth description of each technique is out of the scope of this 

document, as it is not intended to be a state-of-the-art presentation of regression and 

machine learning techniques which, by themselves, are huge scientific research areas.  

2.2.1 Regression Techniques 

The wide variety of regression techniques available is the consequence of none of them 

offering optimal results for all problems. In fact, for a given type of problem, 

furthermore, a given instance of a problem, some techniques give better results than 

others. Often, it is necessary a data scientist to study the problem, select and apply the 

most appropriate technique. Main regression techniques include, among others, the 

following: 

 Linear Regression – In this technique the relationship between input variables 

and output variables is expressed as a linear equation. The goal of the algorithm 

is to find the parameters of the equation that minimize a loss function that 

measures the difference between the values by the equation and the actual 

values. Loss function is typically the sum of squared residuals.  
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Though in some cases linear regression fits very well, relationship between 

variables is often non linear. And, what is more important, in vast amounts of 

input and output data it is difficult to judge “a priori” if a multiple dimensional 

linear regression fits the “shape” of the data. In addition to this, noise in the data 

can also damage linear regression. 

 Logistic Regression [24] – Known also as Logit Regressions, or Logit Model, is 

a special case of regression in which the output variable is a “categorical 

variable” with a discrete set of values, being the most typical example a binary 

variable with only two values 0 or 1 (although it can be applied to multiple 

categories). In the case of binary categories, for each set of input variable values, 

the logistic regression tries to assign a probability to classify them as belonging 

to category 0 or category 1.  

The logistic regression uses the mechanism developed in linear regression by 

modelling the probability with a logistic function [24] applied to a linear 

equation of the input variables. The goal of the algorithms is to find the optimal 

parameters of the equation so that a given loss function is minimized. There are 

a variety of loss function types that will not be explained here, such as mean 

squared error, mean squared logarithmic error, cross-entropy error (frequently 

used for binary classification), etc... 

Logistic regression is very useful to model the influence of a set of independent 

variables in a categorical output variable (classification problem). However, 

success depends on selecting the right set of input variables (those who have 

influence) and ensuring the data collected from these variables are actually 

independent. In addition to this, unbalanced sets of input examples may lead to 

apparently good “predictive accuracy” even when the algorithm is not predicting 

anything. For example, if 95% of samples belong to category 1 and the 

algorithm classifies, blindly, all samples as 1, the accuracy would be 95%. 

Obviously, there are techniques to correct this problem but a skilled data 

scientist is needed. 

 Multinomial Logistic Regression [25] – is basically a generalization of Logistic 

Regression to multiple categories. 

 Time Series models – These models are used for predicting future values of 

variables in which a previous set of values and the temporal order in which they 

happened, are relevant. In this case, previously mentioned regression techniques 

cannot be applied. These techniques include mainly autoregressive models and 

moving-average models. 

 Decision Trees [26] – are tree like DAG graphs (Directed Acyclic Graph) in 

which nodes represent decisions or chances. Traversing the graph helps taking a 

decision given an input set of input variables.  

This kind of tree is simple to understand, may be defined with little data at the 

beginning and extended with more data later, allowing even the representation 
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of new scenarios. However, defining a decision tree is complex and time 

consuming, often requires expert knowledge in the domain, and trees usually 

grow very large and therefore become difficult to understand/visualize, 

especially when working with big data. 

 Multivariate Adaptive Regression Splines (MARS) [27] – It is a non-parametric 

simple and easy to understand regression technique with the ability to 

automatically model non-linearity. It is a kind of an extension of linear models 

but able to handle both categorical and continuous variables.  

MARS is a powerful technique that can be applied to large data sets and can 

compete and, in some cases, outperform Neural Networks [28]. This technique 

has the added benefit of not being a black box, and therefore, allowing engineers 

to understand and visualize discovered relationships better than NN. 

2.2.2 Machine Learning Techniques 

In many situations relationships between input variables can be very complex and no 

mathematical approaches such as regression are appropriate. In these cases, machine 

learning algorithms can emulate human reasoning and can learn, once they are given a 

set of training samples (input and corresponding outputs samples), how the variables are 

related. 

Main machine learning techniques [23] include, among others, the following listed in 

the subsections below. 

 Deep Learning Algorithms / Neural Networks [29] – Deep Learning algorithms, 

(basically deep neural networks) consist of a set of algorithms that are capable of 

training a structure of layers of nodes (neurons) with connections among 

neurons from previous and next layers.  A single neuron consists of a processing 

element which has a number of inputs, each with an associated weight, a transfer 

function which determines the output given the weighted sum of the inputs, and 

the output itself. During the training process the network is fed with a set of 

samples (inputs and outputs) and the network learns to produce the right output 

for a given input by updating the weights. Nowadays, neural networks can be 

trained with huge amounts of data (hence they are very suitable for big data) 

and, once trained, can respond very quickly to new samples. 

In contrast to linear or polynomial regression no assumption is needed about the 

underlying relationship between input/output variables as the network can 

discover complex non-linear relationships by itself. It is also not necessary to 

identify with precision the relevant input variables as the network will learn to 

ignore non-relevant inputs. Neural networks are particularly robust to noise in 

the data. 

In addition to this, Recurrent Neural Networks as LSTM (Long-Short-Term-

Memory) and Convolutional LSTM are special architectures to deal with Time 

Series data and are very appropriate for prediction and forecasting problems 
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where temporal order is important and where causal relation with events 

happened in the past is relevant to identify current events. 

Neural Networks have also been applied to image recognition, speech 

recognition and text translation problems. In recent years, neural networks have 

witnessed a very notorious success in these fields. 

 Support Vector Machines (SVM) – It is a supervised learning algorithm that 

constructs a set of multidimensional hyperplanes (there is a linear and non-linear 

version) typically used for classification and regression. They are used for text 

and hypertext classification, image classification, character recognition and also 

widely used in biological sciences for example to classify proteins. 

 Naive Bayes (Bayesian Algorithms) – Naive Bayes classifiers, are a family of 

simple probabilistic classifiers based on the application of the Bayes Theorem 

with the assumption of independence between every pair of features. They have 

been shown to be very useful for text categorization, this is, categorizing the 

topic of a given document (for example, sports, politics or spam) using the 

frequencies of words, and even in medical diagnosis based on symptoms, 

physical examination and medical record of a patient. They may compete with 

SVM algorithms. 

 Clustering Algorithms - These algorithms, such as k-nearest neighbours 

algorithm (k-NN), are used for classification and regression. Given a set of 

samples, the algorithm tries to classify the samples in groups by finding “centre 

points” in each group so that the distance of the members of a given group to its 

centre is minimized. Then, to classify a new sample, the distances of the new 

sample to the centres of the groups are computed, assigning the new sample to 

the closest group. 

 

2.3 MACHINE LEARNING ALGORITHMS IN APACHE SPARK 

As Apache Spark is the core of SAFIRE framework, this section specifies which are the 

core concepts used in SAFIRE and the main machine learning algorithms (called 

estimators in Spark). 

2.3.1 Core Concepts 

Spark is an open-source framework oriented to real-time big data ingestion and 

processing. The key concepts here are real-time and machine learning. The main 

features of Spark are: 

 It is specially designed to tackle real-time data ingestion and processing. 

 It is designed to take advantage of parallelization as data processing can be 

executed in multiple computing clusters in parallel.  
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 It uses an in-memory data processing architecture which results in much faster 

accessing and processing of the data (this is one of the key reasons for its 

adoption in SAFIRE, devoted to real-time). 

 Is especially suited to support machine learning algorithms due to the fact that 

iterative or cyclic processes take advantage of the in-memory architecture 

benefitting of a much faster load and query data in the memory of a cluster. This 

is one of its main differences with Hadoop that is not memory-oriented, resulting 

in a much slower support, in fact inappropriate, for machine learning algorithms. 

 There are three data abstraction types, unstructured data RDD (Resilient 

Distributed Datasets), more structured DataFrame and DataSets. These types 

represent and evolution from Spark 1.0 to Spark 2.0 and later: RDD is the oldest, 

Data Frames are more user-friendly and more efficient, and finally Datasets 

increase the ease of use and efficiency. ( RDDs will be deprecated in the future 

for direct usage of developers).  

 Data (Data Frames and Datasets included) is internally always organized as 

RDDs and can be distributed in different clusters. There are two types of 

operations on RDDS: 

o Transformations – Define how to create an RDD or how to transform 

one RDD out of other RDDs. Transformations, which can be chained 

in pipelines of subsequent operations, return new RDDs.  

o Actions – Ask for processing and returns a result (not an RDD) to the 

driver program (i.e collect, count, take, etc). 

 Provides an API in Python, Java, Scala and R, and allows the definition of in-

line functions with lambda architecture. 

 A program in Spark is organised as a Driver Program that defines a graph of 

operations to be applied to RDDs, Data Frames and Datasets. These operations 

are executed by a set of Worker Nodes in clusters. Spark applies a lazy 

evaluation to the graph of operations so that execution is really performed when 

the whole graph is defined and the execution is finally asked. Before execution 

Spark may optimize the graph resulting into a simpler and faster graph. This 

process is depicted in figure below. 
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Figure 2-1: Sparks Driver Program-Worker Node architecture in cluster mode (figure taken from Apache 
Spark’s web page) 

 

Key components of Spark can be summarised as follows: 

 Spark Core and Resilient Distributed Datasets (RDD), Data Frames and 

Datasets. These components provide: 

o Input/output operations (i.e. import data from external files). 

o Distributed task dispatching and scheduling. 

o Data transformations (reduce, join, filter, normalize, tokenize, map, 

etc). 

o Etc. 

 Spark SQL. Supports semi-structured and structured data and supports SQL 

with ODBC/JDBC servers. 

 Spark Streaming. Leverages the fast scheduling of Spark Core, allowing very 

quickly ingesting small data batches (needed for streaming), and applying 

transformations to these data batches in real-time. 

 Machine Learning Library (MLib).  

o It is a set of state-of-art machine learning algorithms. 

o Following Spark’s philosophy, these algorithms can also be executed 

in a distributed environment (clusters) taking advantage of 

parallelization. 

o For a given problem, it is very easy to switch out the learning 

algorithm, so it is very easy to explore and play with different 

algorithms to discover which one works better for the problem to 

solve. This is a very important feature of Spark. 
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 GraphX. It is a distributed graph processing framework. Provides an API for the 

computation of large-scale graphs of operations (transformators, estimators, etc) 

in an optimized way. 

Sparks offers a library of Machine Learning algorithms with the goal of being real-time, 

scalable and easy to use (also key reasons for Spark adoption in SAFIRE). In the 

following subsections, main features and algorithms of Spark’s library are explained. 

 

2.3.2 MLib - Conceptual main classes 

Conceptually there are four main abstract classes in the Spark MLib API (see  

https://www.youtube.com/watch?v=6tgvHDYT_AM for an excellent introduction to 

Spark’s MLib) : 

 

 Transformers (data -> transformed data) 

o Are used to pre-process data before applying a machine learning 

algorithm to the data. 

o Transform Data Frames into other Data Frames. A typical example of 

transformation is to Normalize the data (i.e. achieve 0.0 mean, and 1.0 

standard deviation). 

o Example: Transformer.transform(data: DataFrame)-> data: 

DataFrame. 

 Estimators (data -> model) 

o Train Data Frames and create a model. These are the machine 

learning algorithms and will be explained in some detail later in this 

document. There are estimators of the following main types. 

 Classifiers (Logistic Regressions, Decision Trees, Multi Layer 

Perceptrons, Random Forest, bayes, etc). 

 Regressors (Linear, Decision Trees, Random Forest, etc). 

 Clusterers (K-means, Latent Dirichlet Allocation, Gaussian 

Mixture). 

o Example: Estimator.fit(data: DataFrame)-> trainedModel: Model 

 Model (data -> predicted data) 

o Represents a trained engine that can be used to make predictions 

according to the training.  

https://www.youtube.com/watch?v=6tgvHDYT_AM
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o It is, in fact, a kind of transformer, as it transform a Data Frame in 

another Data Frame with an additional column with the predictions. 

o Example: Model.transform(testData: DataFrame)-> predictions: 

DataFrame 

 Pipelines (data -> data -> data -> .... -> data-> model) 

o Allow chaining an arbitrary number of transformations followed by 

one estimator. 

o The pipeline itself is an Estimator, while the resulting model obtained 

by calling the fit() function is a transformed, 

o Example:  Pipeline.fit(data: DataFrame)-> trainedModel: 

PipelineModel 

Figure 2-2, borrowed from Apache Spark’s MLlib main Guide in Spark’s web 

page, explains these key concepts. 

 

Figure 2-2: Pipeline is an Estimator that produces a Model (figure composed by images 
from Apache Spark’s web page). 

In Figure 2-2, the upper row shows the definition of an estimator by chaining 

two transformators (Tokenizer, HashingTF) and an estimator 

(LogisticRegression). By calling the fit() function, the pipeline (middle row) 

produces a model (Logistic Regression Model) that is a transformator that can 

produce predictions (lower row). 

In summary, by using these elements (Transformators, Estimators, Models, Pipelines), 

the Driver Program defines a data processing that will be assigned to Worker Nodes in 

clusters and executed upon asking.  
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2.3.3 Algorithms in Spark’s Machine Learning Library (MLlib) 

This section gives an overview of machine learning capabilities of Spark (a short 

explanation will be given for some of the most interesting). Most of these algorithms 

have been introduced in Section 2.2. 

Before getting into the description of the algorithms, it is worth introducing the list of 

functions to extract, transform and select the features that will be processed by the 

machine learning algorithms.  

2.3.3.1 Extracting, Transforming and Selecting features 

These functions help prepare the data for being processed with an estimator (a machine 

learning algorithm). The list of feature processing functions is huge, and it is out of the 

scope of this document to explain each one, as this document only wants to give an idea 

of the power of Spark’s machine learning algorithms. See 

http://spark.apache.org/docs/latest/ml-features.html for a complete explanation of each 

function. 

 Feature Extractors 

o TF-IDF – feature vectorization method widely used in text mining to 

reflect the importance of a term in a document. 

o WordToVec – maps words of documents to fixed-size vectors. 

o CountVectorizer – convert a collection of text documents to vectors 

of token counts. 

o FeatureHasher – projects a set of categorical or numerical features 

into a feature vector of a specified dimension. 

 Feature Transformation 

o Tokenizer – converts text into individual words. 

o StopWordsRemover – excludes some words from a given text. 

o n-gram – converts a sequence of tokens (i.e. string) in sequences of n 

tokens (n-grams). 

o Binarizer – converts numerical values to 0 or 1 according to a 

threshold value. 

o PCA – performs an orthogonal transformation to convert a set of 

observations of possibly correlated variables into a set of values of 

linearly uncorrelated variables (principal components). 

o PolynomialExpansion – expands a set of features into a polynomial 

space (that is a n-degree combination of the input features). 

http://spark.apache.org/docs/latest/ml-features.html
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o Discrete Cosine Transform (DCT) – applies a discrete fourier 

transform but only with real numbers. 

o StringIndexer – encode list of string into numbers (assigned numbers 

are ordered by frequency). 

o IndexToString – the opposite to StringIndexer. 

o OneHotEncoderEstimator – encode a set of categorical features into a 

binary vector in which each 0/1 of the vector represents the presence 

of the corresponding feature. 

o Interaction – Given two vector of double values, it computes the 

product of all combinations of values of both vectors. 

o Normalizer, StandardScaler, MinMaxScaler, MaxAbsScaler – Given 

a vector of real values, these transformers help normalize and rescale 

their values. For example StandardScaler normalizes the value so that 

they have, for example, 0.0 mean and 1.0 standard deviation. 

o Bucketizer – transforms a column of continuous values into buckets, 

where each buckets consists of a part of the range of the domain of 

the variables. 

o ElementwiseProduct – computes element-wise product of two 

columns of real values. 

o SQLTransformer – applies a SQL like transformation to a set of data 

frames. 

o VectorAssembler – combines a list of columns to produce a single 

vector column that contains lists with the original values. 

o VectorSizeHint – explicitly specifies the vector size of a column 

before it is completed (useful for example in streaming where the size 

is not known in advance) 

o QuantileDiscretizer – bucketizes the input in n buckets, deciding the 

buckets on its own. 

o Imputer – completes missing values in a dataset by computing the 

missing values as means or medians of the column or neighbours 

values. 

 Feature Selectors 

o VectorSlicer – selects a sub-vector of the input sector. 

o RFormula – selects columns specified by a R model formula. 
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o ChiSqSelector – applies a chi-squared test of independence to decide 

the features to select. 

 Locally Sensitive Hashing (LHS) – Hash data points into buckets (according to 

a family of LHS functions). Used in clustering. 

 

2.3.3.2 Machine Learning algorithms (Estimators) 

All of the algorithms described in this section try to predict the value(s) of a set of 

dependant variables (one or more), out from the values of a set of independent 

variables (usually more than the dependant variables). Two phases can be 

distinguished: 

 Training. In this phase, the algorithm learns (by an iterative process) out from a 

set of labelled samples (a labelled sample is a set of values of the independent 

variables for which the value of the dependant variable is known, it is, 

“labelled”). At the end of this phase the training process produces a model. 

 Prediction. In this phase the model is used to predict the dependant variable 

value for a given sample for which the label is unknown. 

The algorithms described below use different techniques to produce the model. 

 

Classification 
 

 Logistic regression (Binomial and Multinomial). The algorithm calculates 

(regresses) the coefficients involved in a linear combination of the values of the 

independent variables that are fed to a logistic function to predict the category of 

the dependant variable (two possible categories in a binary problem, and three 

or more in multi category problems). See 

https://en.wikipedia.org/wiki/Logistic_regression) for a comprehensive 

description of the algorithm.  This is one of the most important methods in 

machine learning. 

 Decision tree classifier. These algorithms learn a decision tree in which each 

node represents a decision to be taken out from the value of a dependant 

variable. The leaves of the tree represent classifications categories of the sample. 

See https://en.wikipedia.org/wiki/Decision_tree_learning for a comprehensive 

description of the algorithm. Decision Trees tend to overfit to the training set. 

In this context, a set of algorithms know as Tree Ensembles, use multiple 

decision trees to improve the accuracy of just one single decision tree. Tree 

Ensembles implemented in Spark are Random Forest and Gradient Boost and 

are known to reduce overfitting of one single tree approach. 

https://en.wikipedia.org/wiki/Logistic_regression
https://en.wikipedia.org/wiki/Decision_tree_learning
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 Random Forest classifier. Are ensembles of multiple decision trees with the 

aim of reducing the overfitting. See 

https://en.wikipedia.org/wiki/Random_forest for a comprehensive description of 

the algorithm. 

 Gradient-Boosted Tree classifier Are ensembles of multiple decision trees 

(usually of fixed size) that are iteratively improved by a gradient descendant 

algorithm optimizing a loss function. See 

https://en.wikipedia.org/wiki/Gradient_boosting  for a comprehensive 

description of the algorithm. 

 Multilayer Perceptron classifier. It is a multilayer fully connected (all neurons 

in a layer are connected to all neurons in the next layer) neural network in which 

activation function of intermediate layers are sigmoid functions (logistic 

function) and activation of output layer is, either a sigmoid function (for two 

categories) or a softmax function (for multiple categories). See 

https://en.wikipedia.org/wiki/Feedforward_neural_network for a comprehensive 

description of the algorithm. 

 Linear Support Vector Machine – constructs a set of hyperplanes in a n-

dimensional space to classify a set of training samples. See 

https://en.wikipedia.org/wiki/Support_vector_machine for a comprehensive 

description of the algorithm. 

 One-vs-Rest classifier – this technique (that is used to classify samples in 

multiple classes or categories) consists of training one single classifier for each 

category (labelling each sample as 1 if it belongs to the category and 0 

otherwise). Once all classifiers have been trained (one per category) then, given 

a new sample, all classifiers are applied and the sample is assigned to the 

category of the classifier that returned a higher confidence. See 

https://en.wikipedia.org/wiki/Multiclass_classification#One-vs.-rest for a 

comprehensive description of the algorithm. 

 Naive Bayes – it is a family of simple probabilistic classifiers that applies 

Bayes’ theorems with strong (naive) independence assumptions between the 

features. See https://en.wikipedia.org/wiki/Naive_Bayes_classifier for a 

comprehensive description of the algorithm. 

 

Regression 
 

 Linear regression – applies the linear regression described in the previous 

algorithm of logistic regression.  

 Generalized linear regression – these are linear models where the output may 

follow other probabilistic distribution different from Gaussian (the assumption 

under linear regression). These distribution functions may be one of the 

https://en.wikipedia.org/wiki/Random_forest
https://en.wikipedia.org/wiki/Gradient_boosting
https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Multiclass_classification#One-vs.-rest
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
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following:   Binomial, Poisson, Gamma, Tweedie and, of course, Gaussian. See 

https://en.wikipedia.org/wiki/Generalized_linear_model for a comprehensive 

description of the algorithm. 

 Decision tree regression - applies a decision tree based regression described in 

the previous algorithm of decision trees classifiers. 

 Random forest regression - applies a random forest regression technique 

described in the previous algorithm of random forest classifiers. 

 Gradient-boosted tree regression - applies a gradient boosted tree regression 

technique described in the previous algorithm of gradient boosted tree 

classifiers. 

 Survival regression – See http://spark.apache.org/docs/latest/ml-classification-

regression.html#survival-regression for a description of the algorithm 

implemented by Spark. 

 Isotonic regression – See http://spark.apache.org/docs/latest/ml-classification-

regression.html#isotonic-regression for a description of the algorithm 

implemented by Spark. 

 

2.3.4 Hyperparameter tuning 

The training process of the algorithms described above need to be parameterized before 

starting the training. Although each algorithm defaults an initial setting of these 

parameters (with typical initial default values), results of trained model strongly 

depends of these parameters. Therefore a big data scientist will need to experiment with 

different parameter settings. 

As an example of these parameters (known as hyperparameters of the algorithm), below 

it is shown the default hyperparameters’ values of a Random Forest Regression (printed 

with pyspark). 

 

# Define a random forest regressor 
rf = RandomForestRegressor(....) 

 

# Hyperparameters and their default values 
{'cacheNodeIds': False, 
 'checkpointInterval': 10, 
 'featureSubsetStrategy': 'auto', 
 'featuresCol': 'prediction', 
 'impurity': 'variance', 
 'labelCol': 'label', 
 'maxBins': 32, 
 'maxDepth': 5, 
 'maxMemoryInMB': 256, 
 'minInfoGain': 0.0, 

https://en.wikipedia.org/wiki/Generalized_linear_model
http://spark.apache.org/docs/latest/ml-classification-regression.html#survival-regression
http://spark.apache.org/docs/latest/ml-classification-regression.html#survival-regression
http://spark.apache.org/docs/latest/ml-classification-regression.html#isotonic-regression
http://spark.apache.org/docs/latest/ml-classification-regression.html#isotonic-regression
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 'minInstancesPerNode': 1, 
 'numTrees': 20, 
 'predictionCol': 'prediction', 
 'seed': -814876731608538448, 
 'subsamplingRate': 1.0} 

 

However, for example, maximum depth of the trees and the number of trees can have 

huge impact on the result. Obviously it is possible to run manually the experiments 

multiple times with different settings, selecting finally the best model found. 

Fortunately Spark’s MLib offers an “automatic” research of the best settings. Let’s see 

how. 

With Spark MLib it is possible to define a grid of possible settings and let Spark run 

automatically repeatedly with the different settings. In the code below (python with 

pyspark), a grid of settings is defined. In this case maxDepth param will range in the 

values 5,6,7,8,9,10, while numTrees parameter will range in the values 

10,11,12,13,14,15,16,17,18,19,20. Therefore a total number of 6x11 = 66 training 

experiments will be made, finally selecting the best model. 

# Define a Param Grid 
paramGrid = ParamGridBuilder() \ 
        .addGrid(rf.maxDepth, [5, 10]) \ 
        .addGrid(rf.numTrees, [10, 20]) \ 
        .build() 
         

Once defined, the grid of settings a TrainValidationSplit estimator is built: 

# Run automatically a validation over the training set and the grid 
of params 
trainValidationSplit = TrainValidationSplit( 
        estimator=pipeline, 
        estimatorParamMaps=paramGrid, 
        evaluator=r2_evaluator) 
 

And finally the fit function is called, with a final selection of the best model. 

# Fit and select the best model  
model = trainValidationSplit.fit(training).bestModel 

 

Obviously, in this case, the fit process will take much more time than a single 

experiment, but this function allows exploring automatically with arbitrarily complex 

grids of parameters. 

A very interesting possibility is to explore the possible combinations of 

hyperparameters setting in parallel, taking advantage of the parallel clusters of Spark. 

More on this is explained in next section. 
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2.3.5 Spark, TensorFlow, Keras and Deeplearning4j 

In addition to Spark’s MLlib, there well known open-source machine learning and deep 

learning frameworks, as for example: 

 TensorFlow (https://www.tensorflow.org) machine learning framework 

originally originally by Google. 

 Torch and Pytorch (https://pytorch.org/) open-sourced by Facebook in 2017. 

 Caffe (http://caffe.berkeleyvision.org/) machine vision library for C/C++. 

 Keras (https://keras.io/), high level API to use TensorFlow in Python. 

 Eclipse Deeplearning4j, deep learning platform for Java, well integrated 

with Kafka, Hadoop and Spark and capable of importing Keras trained 

models. 

 Etc. 

In general terms, Apache Spark (while providing the state-of-art machine learning 

library MLlib) is more oriented to real-time data processing and cluster computing, so 

allowing users to process big-data in multiple cluster, ensuring fault tolerance, etc. On 

the other hand, TensorFlow (and its API Keras), Deeplearning4J, etc, are very much 

oriented to define sophisticated and more complex machine learning algorithms.  

In SAFIRE context, the emphasis is on Big Data, Real-Time ingestion and processing, 

so Spark (that in addition offers a quite good machine learning library MLib) is the 

natural answer. However for very complex learning tasks, a dedicated machine learning 

framework may be more appropriate. 

Spark can be used in combination with TensorFlow, Keras, Deeplearning4j, resulting in 

a Big Data and Real-Time data processing with a variety of machine learning 

algorithms, MLib, TensorFlow, Keras, Deeplearning4j available depending the 

complexity of the learning task. In fact, machine learning frameworks needs big 

amounts of data for training, exactly what Sparks offers. 

The following points show two cases using Spark and a cluster of machines to improve 

deep learning with tensor flow. These examples are taken from  

https://databricks.com/blog/2016/01/25/deep-learning-with-apache-spark-and-

tensorflow.html in which a detailed explanation is given. 

 Deploying large-scale models. 

TensorFlow models can be embedded in pipelines to perform complex 

classification tasks. The model is distributed into multiple workers in 

multiple clusters by using the built-in broadcast mechanism of Spark. This 

architecture brings the possibility of applying deeplearning complex models 

to big data. 

https://www.tensorflow.org/
https://pytorch.org/
http://caffe.berkeleyvision.org/
https://keras.io/
https://databricks.com/blog/2016/01/25/deep-learning-with-apache-spark-and-tensorflow.html
https://databricks.com/blog/2016/01/25/deep-learning-with-apache-spark-and-tensorflow.html
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 Hyperparameters tuning in parallel. 

In this case Spark’s parallelization is used to find the best set of 

hyperparameters values for a neural network training.  

The TensorFlow library is installed in Spark’s clusters as a regular python 

library and each cluster executes one training at a time for a given 

combination of hyperparameters. In this case, parallel searching, drastically 

reduces the time to discover the best model. 

 

2.4 OTHER PREDICTIVE ANALYTICS SOFTWARE 

There is a wide variety of Predictive Analytics Software packages available [30][31]. 

These packages can be classified into two groups: open-source software (basically free 

licence) and commercial software (pay licences).  

Apart from licensing policy and fees, the main difference between them lies in the skills 

needed to use and customize them, and the amount of data they can handle efficiently. 

Generally speaking, open-source software requires more expertise to customize, train 

and handle the tools, while commercial software has more user friendly interfaces that 

make easier the task of modelling, visualizing, managing and training. 

In addition to this, there is specifically a list of deep learning implementations that can 

be found in [32] reporting differences among most of the very well known packages 

such as Keras/Tensorflow, Caffe, Deeplearning4j, MatLab(c), Microsoft Cognitive 

Toolkit(c), Pytorch, Theano, Torch, etc. Some of these packages will be used in 

SAFIRE, especially Keras/Tensorflow. However, it is beyond the scope of this 

deliverable a detailed review of each software package. 

In the following two sections we will give a brief list of the best known available open-

source and commercial predictive analytics software packages.  

 

2.4.1 Open-Source Software 

 Apache Mahout (https://mahout.apache.org) – It is a project from the Apache 

Software Foundation that provides free implementations (most of them on top of 

Apache Hadoop) of machine learning algorithms for filtering, clustering and 

classification. Its algorithms are focused in Distributed Linear Algebra, 

Regression and Clustering. Mahout provides a Java API so that an end user can 

program its own application, therefore, it requires a deep knowledge of the API 

and it is better suited for an IT expert. 

 GNU Octave (https://www.gnu.org/software/octave) – This tool and its 

Scientific Programming Language is a powerful mathematics oriented software 

with visualization tools, linear and non-linear solving packages, and many other 

https://mahout.apache.org/
https://www.gnu.org/software/octave
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numerical packages, as for example statistics and machine learning toolbox. It is 

compatible (and one of the best free alternatives) with the very well-known 

MATLAB(c). 

 KNIME (https://www.knime.com/) – It is specifically devoted to data analytics, 

reporting with a graphical interface that allows using the tool with minimal 

programming effort. KNIMES, written in Java and based on Eclipse, is used in a 

variety of areas like Customer Intelligence Analysis, Social Media Analysis, 

Finance Analysis, Manufacturing, Pharma and Health Care, Retails, etc. It 

allows processing large data sets, includes modules to connect with Big Data on 

Hadoop, supports major file formats (XML, JSON, images...), allows connecting 

to several databases, includes advanced predictive and machine learning 

algorithms, and integrates with machine learning libraries such as Keras, and 

Scikit-Learn. In addition to all this, it allows interactive design of dynamic 

workflows, interactive data-views and web-based reporting.  

 Orange (https://orange.biolab.si/) – It is an open-source data visualization, 

machine learning and data mining toolkit. Similarly to KNIMES, it provides a 

visual interface to define data analysis tasks. It includes, among other features, 

data filtering, sampling, complex visualization, supervised learning algorithms 

for classification and regression, and special packages. For instance, these 

packages provide analysis tools for bioinformatics, networks, text mining, time 

series, etc. 

 R (https://www.r-project.org) – It is a very well known GNU Package consisting 

of a programming language and a software environment for statistics supported 

by the “R Foundation for Statistical Computing”. It is widely used by 

statisticians and data miners to develop statistics software and data analysis 

software. 

 Scikit-learn (http://scikit-learn.org/stable/#) – It is a Python library for machine 

learning including Classification Algorithms (SVM, Nearest Neighbour, 

Random Forest, etc), Regression Algorithms, Clustering Algorithms, 

Dimensionality Reduction, etc. 

 Weka (https://www.cs.waikato.ac.nz/~ml/weka/)  – It is a collection of 

visualization tools, machine learning algorithms and predictive modelling 

written in Java and developed by the University of Waikato in New Zealand. 

Weka is integrated with Deeplearning4j for deep learning. 

According to [33] and classified by categories, the open-source tools with higher score 

(Editor’s rating) are Orange Data Mining, R Software, Weka, KNIME and HP Haven 

Predictive Analytics. 

2.4.2 Commercial Software 

The list of available commercial software is huge, as many companies are interested in 

the market of data analysis. In [30] a list of the most known open-source and 

https://www.knime.com/
https://orange.biolab.si/
https://www.r-project.org/
http://scikit-learn.org/stable/
https://www.cs.waikato.ac.nz/~ml/weka/
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commercial software solutions can be found. In [33], an overview and a score of the 

best Predictive Analytics Tools, classified by categories, can be found. The list below 

represents some of the most relevant commercial tools. 

 Alpine Data Labs 

 Alteryx 

 Angoss KnowledgeSTUDIO 

 Actuate Corporation BIRT Analytics 

 Dataiku DSS 

 Google Cloud Prediction API 

 IBM Analytics 

 IBM SPSS Statistics and IBM SPSS Modeler 

 KXEN Inc. Modeler 

 Mathematica 

 MATLAB 

 Minitab 

 LabVIEW 

 Microsoft Azure Machine Learning 

 Neural Designer 

 Oracle Advanced Analytics 

 Pervasive 

 Predix 

 Predixion Software 

 RapidMiner 

 RCASE 

 Revolution Analytics 

 SAP HANA and SAP Predictive Analytics 

 SAS and its Enterprise Miner 

 Sidetrade 

 Stata 

 Statgraphics 

 Statistica 

 Tibco Software 

According to [33] and classified by categories, the commercial tools with higher score 

(Editor’s rating) are Microsoft Azure Machine Learning, Dataiku DSS and Google 

Cloud Prediction API. 

2.4.3 Interoperability of Predictive Analytics Software 

Interoperability of Predictive Analytics Software requires a way to interchange models 

and data analysis between software packages. The answer to this need is PMML [34], a 

standard for statistical and data mining models (supported by over 20 vendors) that 

allows (a) developing a model with one software package, (b) exporting the model into 

a PMML file, and (c) import the model back into another software package. 

PMML is a XML file (with a defined schema) that allows defining, and therefore 

interchanging, among others, the following concepts: 

 Field Scopes. 

 Data Dictionaries. 

https://en.wikipedia.org/wiki/Alpine_Data_Labs
https://en.wikipedia.org/wiki/Alteryx
https://en.wikipedia.org/wiki/Angoss
https://en.wikipedia.org/wiki/Actuate_Corporation
https://www.dataiku.com/dss/features/connectivity/
https://cloud.google.com/prediction/?hl=es
https://www.ibm.com/analytics/
https://en.wikipedia.org/wiki/SPSS
https://en.wikipedia.org/wiki/SPSS_Modeler
https://en.wikipedia.org/wiki/KXEN_Inc.
https://en.wikipedia.org/wiki/Mathematica
https://en.wikipedia.org/wiki/MATLAB
https://en.wikipedia.org/wiki/Minitab
http://www.ni.com/en-us/shop/labview.html
https://studio.azureml.net/
https://en.wikipedia.org/wiki/Neural_Designer
https://en.wikipedia.org/wiki/Oracle_Corporation
https://en.wikipedia.org/wiki/Pervasive_Software
https://www.predix.io/
https://en.wikipedia.org/wiki/Predixion_Software
https://en.wikipedia.org/wiki/RapidMiner
https://en.wikipedia.org/wiki/RCASE
https://en.wikipedia.org/wiki/Revolution_Analytics
https://en.wikipedia.org/wiki/SAP_HANA
https://en.wikipedia.org/wiki/SAS_(software)
https://en.wikipedia.org/w/index.php?title=Sidetrade&action=edit&redlink=1
https://en.wikipedia.org/wiki/Stata
https://en.wikipedia.org/wiki/Statgraphics
https://en.wikipedia.org/wiki/Statistica
https://en.wikipedia.org/wiki/Tibco_Software
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 Mining Schemas. 

 Transformations. 

 Statistics. 

 Functions. 

 Bayesian Networks. 

 Naive Bayes Models. 

 Cluster Models. 

 Regression Models. 

 Neural Networks. 

 Time Series. 

 Vector Machines. 

 Etc. 

In Spark, and therefore in SAFIRE, some of the machine learning algorithm models can 

be exported into PMML. The table below (borrowed from Spark’s MLlib web page): 

Spark's MLIB Model PMML Model 

KMeansModel ClusteringModel 

LinearRegressionModel RegressionModel (functionName="regression") 

RidgeRegressionModel RegressionModel (functionName="regression") 

LassoModel RegressionModel (functionName="regression") 

SVMModel RegressionModel (functionName="classification" 
normalizationMethod="none") 

Binary LogisticRegressionModel RegressionModel (functionName="classification" 
normalizationMethod="logit") 

Table 2-1. Spark’s MLlib model supporting exporting into PMML. 

Below is an example of source code (borrowed from Spark’s MLIb web page, see 

https://spark.apache.org/docs/2.3.0/mllib-pmml-model-export.html) showing how to 

export into PMML.  

import org.apache.spark.mllib.clustering.KMeans 
import org.apache.spark.mllib.linalg.Vectors 

 
// Load and parse the data 

data = sc.textFile("data/mllib/kmeans_data.txt") 
parsedData = data.map(s => Vectors.dense(s.split(' ').map(_.toDouble))).cache() 

 
// Cluster the data into two classes using KMeans 

https://spark.apache.org/docs/2.3.0/mllib-pmml-model-export.html
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val numClusters = 2 
val numIterations = 20 
val clusters = KMeans.train(parsedData, numClusters, numIterations) 

 
// Export to PMML to a String in PMML format 

println(s"PMML Model:\n ${clusters.toPMML}") 
 

// Export the model to a local file in PMML format 

clusters.toPMML("/tmp/kmeans.xml") 
 

// Export the model to a directory on a distributed file system in PMML format 

clusters.toPMML(sc, "/tmp/kmeans") 
 

// Export the model to the OutputStream in PMML format 

clusters.toPMML(System.out) 
 
 
 

2.5 RELATED EU  PROJECTS 

This section briefly describes some EU projects related to SAFIRE that will be taken 

into account: 

 PrEstoCloud – EU H2020-ICT-2016-1 (2016-2019). Dynamic and distributed 

software architecture that manages cloud and fog resources proactively, while 

reaching the extreme edge of the network for an efficient real-time Big Data 

processing. 

 MIKELANGELO - EU H2020-ICT-2014-1 (2014-2017). Resource management 

layer for heterogeneous, cloud-based infrastructures, including methodologies, 

tools, implementations. 

 REPARA - EU-FP7 (2013-2016). Software engineering methodology, 

development tools, computer hardware design and analysis, all working hand-in-

hand with industrial end-users to achieve a unified programming model for 

heterogeneous computers developing also the required automated software 

support tools. 

 DREAMCLOUD - EU-FP7 (2013-2016). Application performance analysis and 

tailoring for heterogeneous (embedded and HPC) infrastructures. 

 C2-Net Cloud Collaborative Manufacturing Networks– EU-FP7 (2015-2018). 

The goal of C2NET Project is the creation of cloud-enabled tools for supporting 

the SMEs supply network optimization of manufacturing and logistics assets 

based on collaborative demand, production and delivery plans. C2NET Project 

will provide a scalable real-time architecture, platform and software to allow the 

supply network partners:  

 To create cloud-enabled tools. 

 To support the SMEs supply network optimization of manufacturing and 

logistics assets based on collaborative demand, production and delivery 

plans. 
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 CREMA – Cloud Based Rapid Elastic Manufacturing - EU H2020 (2015-

2018). CREMA aims at simplifying the establishment, management, adaptation, 

and monitoring of dynamic, cross-organisational manufacturing processes 

following cloud manufacturing principles. CREMA will develop the means to 

model, configure, execute, and monitor manufacturing processes, providing end-

to-end support for cloud manufacturing by implementing real systems and testing 

and demonstrating them in real manufacturing environments. 

 VF-OS – Virtual Factories Operating System – H2020 EU. Vf-OS offers a 

manufacturing oriented cloud platform, supporting a multi-sided market 

ecosystem that provides a range of services for the connected factory of the 

future, allowing manufacturing companies to develop and integrate better 

manufacturing and logistics processes. VF-OS will enable the Manufacturing 

Operating system by providing the following functionalities: 

 

 Virtual Factory System Kernel. 

 Virtual Factory Device Drivers and Open APIs. 

 Virtual Factory Middleware and Databus. 

 Open Application Development Kit. 

 Cloud Manufacturing Framework. 

 Virtual Factory Components. 

3. INNOVATION 

As stated in SAFIRE Technical Annex Section 1.4.2, the main originality lies in solving 

the crucial problem of how to support process/product optimisation in manufacturing 

industry by combining:  

 production situation modelling and monitoring, situation analysis and 

determination. 

 predictive analytics. 

 dynamic and predictable reconfiguration. 

 to achieve integrative solutions for: 

 self-adaptive process/product reconfiguration. 

 supporting feedback loops from products use to both process/product 

design and production control. 

In order to achieve this goal, and specifically regarding Predictive Analytics Platform, 

this project provides the following innovations: 
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 A dataflow execution architecture to handle the data extraction, transformation 

and loading to the framework, differing from the traditional computational 

architecture of data. A cloud agnostic big data platform will be developed using 

the latest open source trends. From an architectural point of view the so-called 

Lambda architecture will be improved using the same engines and storage tools 

for both fast and slow data. 

 Predictive Analytics Elasticity. A platform offering elastic, highly scalable, fault 

tolerant and high-throughput platform using a distributed, coordinated and 

clustered system. Exceptional workloads can run on a more powerful cluster by 

taking more computing resources from the public clouds using cheap instances. 

When those exceptional workloads have been processed the cluster size will be 

shrunk to the minimum size in order to save costs (see D.1.4 SAFIRE Concept, 

Section 4.1.3 Expected Innovation). This resource management will be managed 

by the platform, isolating the end user from the technical complexities. 

 Predictive Analytics Services allows a non-expert in Predictive Analytics to 

define real-time data gathering and basic but powerful analysis that, otherwise, 

would require the collaboration of a data scientist expert. A variety of smart 

predictive models and techniques will be within the reach of manufacturing 

industry professionals. 

Even if some of the features offered by the project can be already available as technical 

solutions, they are not within easy reach of SMEs in an industrial environment. As a 

result of SAFIRE developments, a powerful Predictive Analytics Platform will be 

available for non-experts to use in an industrial environment and with reasonable costs.  

In the sections below, some details about those innovations are included. 

3.1 DATAFLOW ARCHITECTURE 

The platform capabilities will include aggregation, filtering mapping, reducing, etc. 

New Big Data analytics engines provide a unified engine for doing real-time and batch 

analytics, and for this project, an implementation on top of those engines that simplifies 

the overall big data architecture will be developed. From an architectural point of view 

the so-called lambda architecture will be improved using the same engines and storage 

tools for both fast and slow data. 

3.2 PREDICTIVE ANALYTICS ELASTICITY 

Big data platforms usually require big computing clusters with isolated workloads. In 

order to improve the computational efficiency of such clusters, dynamic resource 

managers will be used in this project apart from the standard in the Hadoop world. Such 

resource managers include Nomad, Mesos, Swarm or Kubernetes and all of them try to 

improve cluster resource utilization sharing computing resources between different 

tasks via isolation. Moreover, the developed platform will try to exploit the elasticity of 

the public clouds in order to reduce the costs from its usage (e.g. reduce the cluster size, 

use spot instances, etc). This feature could be implemented for example on Mesos using 

the maintenance primitives along with performance metrics. 
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Figure 3-1. Using a Spot based cluster. 

Finally, as there is a new research trend in scalable data stores called NewSQL where 

strong consistency and relational capabilities are added to highly scalable non-relational 

databases, in this project we will research the maturity and explore capabilities of these 

new approaches in an industrial environment. 

3.3 PREDICTIVE ANALYTICS SERVICE  

On the analytical area, we plan to develop new predictive analytics algorithms, which 

for example can improve the downtime of machines. We plan to explore weakly 

labelled data from Cyber Physical Systems (CPS) and smart products using a Deep 

Learning approaches for various tasks such as anomaly detection. Detecting anomalies 

from CPS data is usually difficult as the CPS usually stay on “normal behaviour”. 

Therefore, algorithms that model the normal behaviour of the CPS will be developed 

using recurrent neuronal networks or long/short term memory neurons. Another way to 

look at this problem is to use Boosting-based methods that are providing impressive 

results for real world problems on Kaggle1. 

The predictive analytics service will be easy to use for non-expert industrial users. For 

example, end-users will be able to call pre-trained predictive models just passing the 

input data and asking for predictions, and the service will invoke the model, pass the 

data, and return the predictions to the client. 

  

                                                           

1 https://www.kaggle.com/ 
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4. PREDICTIVE DATA ANALYTICS PLATFORM MODULE SPECIFICATIONS 

4.1 SPECIFICATIONS TO HANDLE GENERAL REQUIREMENTS 

In this section, General Requirements, named as PA_GR* (Predictive Analytics General 

Requirement) and their corresponding General Specifications, named as PA_GS* 

(Predictive Analytics General Specification) are defined. 

4.1.1 Requirements 

As stated in SAFIRE deliverable D1.4 Safire Concept in section 4.1.1, the main general 

requirements in Predictive Analytics can be summarised in the following point: 

 PA_GR1 - Provide a Real-Time Big Data framework for industrial Data 

Processing and Analytics to continually improve the manufacturing processes and 

the final product design, production process and operation itself. 

As discussed in D1.4 Safire Concept traditional data processing applications are not 

well adapted to work with large/huge and complex datasets. Frequently these datasets 

also grow in real-time. Therefore, SAFIRE requires an innovative framework for real-

time big data processing and analytics that overcomes these limitations. The workflow 

of this framework poses the following requirements: 

 PA_GR2 - Ingestion: It is necessary to be able to define the input and output 

connectors and how data collection works.  

 Connectors: Define new input connectors from different kinds of 

production systems, cyber physical systems (CPS) and smart objects (e.g. 

intelligent products). Besides, integration with different legacy systems 

and availability on distinct platforms has to be considered.  

 Data Collection: Data ingestion encompasses structured and unstructured 

data sets, taken from static situational data or streaming situational data in 

real-time.  

 PA_GR3 –The framework should work in a reliable way across different 

computer nodes in order to have big data analytics capabilities, for what is termed 

a computing cluster. As the task of managing the system can have a great impact 

on these types of systems, a cluster kernel in charge of resource management will 

be provided. This cluster manager will provide different services such as efficient 

resource utilisation, task management or service discovery for the different 

analytics tasks that will run on the cluster.  

 PA_GR4 - Processing/Analytics: The stream data processing offers data 

aggregation, filtering, mapping, reducing, etc. in a near real-time context.  

 PA_GR5 – Be able to work with production and product data analytics to get 

more accurate predicted data by means of near real-time data processing.  

 PA_GR6 - Data can be processed and analysed both offline (offline learning) and 

in real-time.  
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 PA_GR7 - An easily configurable dataflow is needed in order to route the 

information flow; therefore, tools providing such support will be integrated on 

SAFIRE. 

 PA_GR8 - The Big Data platform will be a PaaS, so it can be deployed both on-

premises or on different public cloud providers.  

4.1.2 Specifications 

In this section, General Specifications (GS*) corresponding to one or more General 

Requirements (GR*) are defined. 

 PA_GS1 (Satisfies PA_GR1, PA_GR2, PA_GR3) – Safire Software Technology 

Architecture specification (defined in SAFIRE deliverable D1.4. SAFIRE 

Concept) defines an architecture that is scalable and supports data routing and 

transformation via NiFi and streaming apps via Kafka.  This architecture can store 

data in a distributed way allowing replicated clusters. 

 Any data source (from different kind of production systems, cyber 

physical systems (CPS) and smart objects, e.g. intelligent products) can be 

ingested as long as it has its corresponding connector capable of sending 

data to SAFIRE via NiFi with a given format. Data ingestion includes 

structured and unstructured data sets, taken from static situational data or 

streaming situational data in real-time.  

 A cluster kernel in charge of resource management will be provided. This 

cluster manager will provide different services such as an efficient 

resource utilisation, task management or service discovery for the different 

analytics tasks that will run on the cluster. There can be replicated clusters 

to guarantee reliability. 

 PA_GS4 (Satisfies PA_GR5) – It is possible to aggregate, filter, map, reduce, etc, 

the stream data in a near real-time context.  

 PA_GS5 (Satisfies PA_GR5) – As long as data from production processes and 

the products themselves are uploaded via the corresponding connectors/NiFi and 

stored into Cassandra, the Predictive Analytics Platform will be able to work with 

them in near real-time. 

 PA_GS6 (Satisfies PA_GR6) – Incoming data can be analysed/predicted online in 

near real-time as long as a learning algorithm, executed offline, has learnt to 

analyse/predict form a collection of past data. Learning algorithms are not real-

time as execution time depends on volume of training data.  

 PA_GS8 (Satisfies: PA_GR8) - The Big Data platform will be deployed in a 

cluster of virtual machines in which the platform will be hosted. It will consist of 

a variable number of virtual machines, with at least two virtual machines, one as 

master and another as a computer agent. For better availability, there should be 3 

or 5 masters and an odd number of agents due to the need of a strict majority or 

quorum (an even number gives no benefit over having the previous odd number). 

Minimum virtual machine requirements are:  
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 Masters: 4 cores, 16 GB RAM, 120 GB hard drive (fast disks). 

 Agents: 2 cores, 16 GB RAM, 60 GB hard drive. 

 

4.2 SPECIFICATIONS TO HANDLE CROSS-COMPONENTS REQUIREMENTS 

In this section, Cross Component Requirements, named as PA_CCR* (Predictive 

Analytics Cross Component Requirement) and their corresponding Cross Components 

Specifications, named as PA_CCS* (Predictive Analytics Cross Components 

Specification) are defined. 

4.2.1 Requirements 

 PA_CCR1 - Data processing and analysis results must be stored in shared 

repository accessible via REST.  

 PA_CCR2 - Data to be shared can be published in real-time channels via the 

distributed messaging system. 

4.2.2 Specifications 

 PA_CCS1 (Satisfies PA_CCR1) - Data processing and analysis results will be 

stored in Cassandra and data will be accessible via a spring web REST service. 

 PA_CCS2 (Satisfies PA_CCR2) – A Publish/Subscribe mechanism will be 

offered via Kafka. 

 

4.3 SPECIFICATIONS TO HANDLE INDUSTRIAL BUSINESS CASE REQUIREMENTS 

This section describes how and which of the requirements gathered in D1.1 Application 

Scenarios Requirements Analysis in (a) Section 5.6 Data Mining and Analytics and (b) 

Section 5.10 Performance are covered by these final specifications. In addition to this, 

the planned features of the early prototype as defined in D1.4 SAFIRE Concept, Section 

5.3.2 Full Prototype Content have been taken into account. 

As described in D1.1, three business cases involving three industrial partners will be 

used in SAFIRE to demonstrate the applicability of the solution. For each one of the 

business-case industrial partners, the following scenarios were chosen: 

Electrolux: 

 Scenario 1: improve device performance based on feedback 

 Scenario 2: improve device performance based on historical data 

 Scenario 3: adaptive control of devices 

ONA: 

 Scenario 1: advanced monitoring and data analytics services for EDM machines 
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 Scenario 2: smart workshop manager / automated EDM manufacturing line 

OAS: 

 Scenario 1: real/run-time reconfiguration  

 Scenario 2: identification of (specified) events /event causes 

 Scenario 3: knowledge generation to design 

Analysing those scenarios resulted in the requirements described below.   

4.3.1 Requirements 

In this subsection, Business Case Requirements specifically related to Predictive 

Analytics are analysed. Naming of each requirement (i.e. U78) corresponds to naming 

in deliverable D1.1 Application Scenarios Requirements Analysis. 

4.3.1.1 Data Mining and Analytics Requirements from Industrial Business Cases 

Req. 
No. 

Requirement Overall Priority 

U78 Supports data mining to extract useful 
patterns about operator behaviour 

SHALL 

U79 Supports data mining to extract useful 
patterns about machine status 

SHALL 

U80 Supports data mining to extract useful 
patterns about production process 
status 

SHALL 

U81 Provides support for selection of 
sensors / systems to be analysed 

SHALL 

U82 Provides support for selection of 
information sources to be analysed 

SHALL 

U83 Provides support for data/sensor 
composition functionality 

SHALL 

U84 Able to provide historical knowledge 
about system deviations or problems 

SHOULD 

U85 Able to provide decision support for 
production line selection 

SHOULD 

U86 Able to increase visibility of the 
production process 

SHALL 

U87 Supports analysis for algorithm 
definition for boiling/temperature 
control functionality 

SHALL 

U88 Supports sensitivity analysis to noise SHALL 

U89 Supports main variation factor 
identification and robust strategy for 
minimising 

SHOULD 

U90 Supports computational resources 
estimation of machines 

SHOULD 
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Req. 
No. 

Requirement Overall Priority 

U91 Supports estimation of performance 
decrease for algorithm complexity 
reduction 

SHOULD 

U92 Supports process repeatability and 
stability characterisation 

SHALL 

U93 Supports Design of Experiments 
(DOE) and Analysis of Variance 
(ANOVA) analysis 

SHOULD 

 

4.3.1.2 Performance Requirements from Industrial Business Cases 

Req. 
No. 

Requirement Overall Priority 

U115 Does not negatively affect the usual 
production processes 

SHALL 

U116 Support for scalability in the size of 
cloud and computing resources 

SHALL 

U117 Support for horizontal scalability to 
many machines 

SHALL 

U118 Capable of real-time data ingestion 
(registering data) 

SHALL 

U119 Capable of batch processing of data 
(offline analysis) 

SHALL 

U120 Capable of real-time data processing   SHALL 

U121 Capable of providing real-time 
reconfigurations / optimisations 
(subject to network throughput limits) 

SHALL 

U122 Able to analyse relevant data within a 
given timeframe 

SHALL 

U123 Capable of storing up to 5 
TB/year/machine with resource 
recycling facilities  

SHALL 

U124 Provides support for Machine Learning 
(Supervised / Unsupervised / Anomaly 
Detection) 

SHALL 

U125 Able to achieve required precision on 
cooking process estimation / 
optimisations 

SHALL 

4.3.1.3 Interface Requirements from Industrial Business Cases 

Req. 
No. 

Requirement Overall Priority 

U130 Able to access data stored in a SHALL 
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Req. 
No. 

Requirement Overall Priority 

relational database 

U131 Able to receive and send data from/to 
a remote location 

SHALL 

 

4.3.2 Specifications 

 PA_BCS1 Real-Time Analytics (Satisfies U79, U80, U118) – Basic real-time 

analytics such as KPI calculation.  

 PA_BCS2 Batch Analytics (Satisfies U84, U80, U124, U115) – Basic offline 

analytics, as for example, predictive learning.  

 PA_BCS3 Scalable No-Sql Storage (Satisfies U123, U118) – A NoSQL database 

based will be implemented in the full prototype.  

 PA_BCS4 Data Gathering (Satisfies U130, U131) – Full data input will be 

provided for the full prototype operation evaluation. 

 PA_BCS5 Support for different IoT Protocols (Satisfies U137) – Connectors will 

be able to store data in SAFIRE Platform via NiFi. SAFIRE Predictive Analytics 

Platform is not related to IoT protocols. It is responsibility of the corresponding 

connector to interface with the device/machine and store data via NiFi. 

4.4 SPECIFICATION OF GENERIC FUNCTIONALITIES 

A typical Predictive Analytics Process setup or configuration [35] has at least the 

following steps: 

 Define Project – In this step, the outcome, scope, objectives and involved 

datasets are identified. 

 Data Collection – Datasets have to be collected, as for example in the case of 

SAFIRE, through an online mechanism of production/process data gathering 

that is uploaded to the cloud via business case device connectors.  

 Data Analysis – In this step, it must be possible to inspect, clean, filter, reduce, 

transform, etc the data so it is ready for user visualisation, analysis and 

predictive modelling task. 

 Statistics – Statistical techniques can be applied to the data to explore relations, 

correlations, assumption, etc. so useful information is extracted from the data. 

 Predictive Modelling – Provides the functions to create, train and test models 

that can learn to correlate/predict a given set of data from past/present sets of 

data. Main focus of Predictive Analytics module will be here. 
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 Deployment – Provides the ability to deploy analytical results into everyday 

decision making problems. For example, a given application may request to be 

notified when a given variable is predicted to have a given value. 

A Predictive Analytics Platform has to provide functions to accomplish the most 

important steps described above. Next subsections describe the functionalities to be 

provided by the Full Prototype. 

4.4.1 Data Collection/Storage Functionality Specification 

This functionality is common to all modules and should allow collecting and storing 

data in the cloud. It will be possible to upload data collected from machines and store 

into the cloud via machine connector/NiFi/Kafka/Cassandra.  

Figure below shows an example of a schema on how data is uploaded and stored for 

ONA business use case. This example will be described step by step. 

 

Figure 4-1 – Example of data flow from ONA machine into Cassandra via NiFi/Kafka. 

In this example, ONA machine’s connectors are implemented as a NiFi processor that 

can connect ONA machines via ONA Link protocol (via TCP socket).  Figure below 

shows the NiFi processor SfrOnaLinkRMCDmvarUserRequest (groovy script) that can 

be configured to poll variables. 
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Figure 4-2 – NiFi processor implementing a connector to ONA machines via ONA Link 

As the NiFi processor receives values of variables, it builds a JSON file containing the 

data and sends the file to the output port. Figure below presents details of a JSON file 

produced by the connector in which for each variable the following information is 

detailed: 

 id: name of the variable. 

 value: value read. 

 timestamp: time stamp of reception of the value by the connector. 

 hostname: IP address from which the variable was read. 

 port: port number of the socket. 

 



D2.5 Final Specification of Predictive Analytics Platform   

Page 42 Version 1.0 12 November 2018 

Confidentiality: EC Distribution 

 

Figure 4-3 – JSON file with data. 

Once the data is received via NiFi, (a) another NiFi node publishes the data in a given 

Kafka topic, (b) the routing/distribution/scalability mechanism sends the data wherever 

is needed and (c) a given consumer can consume the data from Kafka´s corresponding 

topic. Figure below shows this flow. 
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Figure 4-4 - Kafka Manages Data Routing, Distribution and Scalability. 

Finally, a sequence of NiFi nodes consume the JSON file from Kafka and store the data 

into Cassandra. The following figure describes the steps given. 

 

Figure 4-5 – NiFi sequence of nodes storing data into Cassandra. 

 Each JSON file is received in the sequence input port. 

 The file is “decoded” to extract the data (IP, port, timestamp, var name, value). 

 A Cassandra query is built to put the data into Cassandra. 
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 Finally, a Cassandra Query Put is performed to store the data. 

 

4.4.2 Data Query Functionality Specification 

For the full prototype, as it was done in the early prototype, a REST Based data query 

functionality will be developed. This REST API will be compatible with the OpenAPI2 

specification and clients will be automatically generated by Swagger Codegen3. 

The main data query functionality available on the Full Prototype is summarized below: 

 Query smart product & smart factory historic production data. E.g. obtain 

historic data for the given product. 

 Query for Analytics results (real-time / batch). One example of this is the 

prediction of the boiling point based on previous data.  

Currently, OpenAPI is under design and complete details will be depicted on the Full 

prototype specification.  

4.4.3 Predictive Modelling Functionality Specification 

4.4.3.1 Introduction 

In the final prototype online real-time prediction service functionality will be 

implemented, following the SAFIRE architecture (Figure 4-6) that specifies a Predictive 

Analytics Service developed as Spring REST Web Services. The following subsections 

specify the services in detail.   

 

Figure 4-6 - Spring Predictive Analytics REST Web Services. 

 

                                                           

2  https://www.openapis.org/ 

3 https://swagger.io/swagger-codegen/ 

 

https://www.openapis.org/
https://swagger.io/swagger-codegen/
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Prediction Service 
 

The clients will be able to invoke and load previously trained models, not only Spark 

models but also Keras/Tensorflow models, as it is shown in Figure 4-7. The use-case of 

usage, shows the following: 

 A Client requests a service (1) to the Prediction Service consisting on applying a 

given predictive model (trained with a given backend, such as spark or keras) to 

an input sample of values to get some predicted values. 

 The Prediction Service receives the request and (2) invokes the backend to load 

the predictive model, (3) gets the predicted values and sends the predicted values 

back (4) to the Client. 

 

Figure 4-7 - Spring Web Service REST and Web Service REST Client Workflow. 

 

In the following sections, both the service and the client will be described in detail.  

 

Modelling and Training 

As mentioned in previous section, generation of predictions with machine learning 

techniques require a trained predictive model. Therefore, two clearly separated 

activities are: 

 Definition and Training of the predictive model. 

 Exploitation of the model to generate Predictions. 

Model definition and training is not an obvious task and usually requires expert 

knowledge. Spark provides dozens of sophisticated machine learning algorithms, 

transformations and multiple ways to define the architecture of a model. Other 

packages, such as keras, also offer a wide variety of alternatives to define, train and 

fine-tune deep learning algorithms.  
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These types of machine learning packages offer very powerful and sophisticated APIs 

for big data scientist. Therefore, it is not realistic trying to develop a Predictive 

Analytics Training Web Service with the aim to hide the complexity of such task to 

non-experts. Such a trial would end up: 

 Or with (a) a very simplistic service with very limited functionality. 

 Or with (b) a very complex service, even more complex that the API’s 

themselves, and of course useless for non-expert people. 

SAFIRE takes the following approach: 

 Regarding model definition and training, SAFIRE will define templates 

consisting in source code with examples that will allow non-expert users to 

define and train medium complexity models. 

 Regarding prediction generation, SAFIRE will develop a REST Web Service 

that will allow non-expert users to easily generate predictions by invoking 

previously trained models. 

Next sections describe prediction service specifications and some examples of the 

source code templates for training that will be developed in the full prototype. 

 

4.4.3.2 Prediction Service  

Predictive Analytics Prediction REST Web Service (or simply Prediction Service) will 

be implemented as a: 

 REST Web Service developed in Java with Spring. The service will accept 

client’s prediction requests and will answer with predicted values. This 

service will be accessible in two ways: 

o From a Web navigator such as Internet Explorer, Google Chrome, etc. 

o From a BC REST Web Client typically developed in java with Spring. 

o Any other SAFIRE modules. 

The service will: 

o Receive an input consisting mainly in a Spark dataframe in JSON 

format. The input dataframe will consist in a collection of Sparks’s 

Dataset<Row> representing the samples for which a prediction is 

required.  

o Invoke a predictive modelling to predict the values according to the 

input dataframe. 
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o Return the values as additional columns to the input dataframe.  

 REST Web Clients developed in Java with Spring. As mentioned earlier, 

clients can be BC applications, or other SAFIRE modules. A template of 

Spring java REST Web Service’s Client will be developed in Java with 

Spring so that prediction service can be easily accessible for non experts, 

writing their own specialized instances of clients in a easy way. 

Service Specifications 
 

This section specifies the input parameters of the service and the specification of the 

answer returned by service. 

Service name 

 String SafirePrdAnalyticsPredictor 

Parameters in the Request 

 String ipAddress – Identifies the ip address where the service is located. 

 String port – Connection port to the service. 

 long clientId – Identifies the client’s request. Can be any number provided 

by the client. This identification will be included back with the answer. 

 String clientTopic – Client topic is a string provided by the client. It is 

simply a complement to the client’s request and might be the empty string. 

This topic will be included back with the answer and can help the client to 

indentify better the answer. An example of client’s topic may be 

“Boil_detection_25-Oct-2018_16-51-00” that identifies a boiling experiment.  

 String modelName – Upon request, the service will (a) invoke and load a 

previously trained predictive analytics model and (b) will call the model to 

predict values according to dataFrameRowDataJSON parameter (see below).  

 String backendName – Indicates the backend that will process the 

invocation. Allowed values are: spark or keras 

 String dataFrameColNamesJSON – Contains the dataframe column names in 

JSON format, according to the following syntax: 

{"dataFrameColNames":["name1","name2",....]} 

Example (three columns case): 

{"dataFrameColNames":["id","text","label"]} 

 String dataFrameColTypesJSON – Contains the dataframe column types in 

JSON format. Allowed types are integer, double, string, arrayInteger, 

arrayDouble. Syntax is as follows: 
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{"dataFrameColTypes":["type1","type2", ...]} 

Example (three columns case): 

{"dataFrameColTypes":["integer","string","double"]} 

 String dataFrameRowDataJSON – Contains the dataframe rows in JSON 

format. Each row must have the number of values specified in 

dataFrameColNamesJSON  with its corresponding type specified in 

dataFrameColTypesJSON. Syntax is as follows: 

{"dataFrameRowData": 
[[row1data1, row1data2, ...],  
[row2data1, row2data2, ...],  
[row3data1, row3data2, ...], 

... 
]} 

 

Example 1 (two rows with three columns of type integer, string, double): 

{"dataFrameColNames":["id","text","label"]} 
{"dataFrameColTypes":["integer","string","double"]} 
{"dataFrameRowData": 

[[7,"this is an example ssd", 1.0], 
 [8,”another text”, 0.0]]} 

 

Example 2 (two rows with one column of type arrayDouble): 

{"dataFrameColNames":["currentValues"]} 
{"dataFrameColTypes":["arrayDouble"]} 
{"dataFrameRowData": 

[[[1.456, 2.3456, 3.2345, 1.3456]],  
[[2.3737, 4.2829, 1.2876, 8.7625]]}  

 
 

Answer given by the service 

The service will always return a JSON string containing the following fields: 

 long callCount - Represents an automatic counter with the number of times 

the service has been requested since it was started (just informative purpose).  

 long clientId- The client identification that was provided by the client in 

the request. 

 long clientTopic - The client topic that was provided by the client in the 

request. 

 String modelName – The predictive model that was provided by the client in 

the request. 

 String backendName – The backend that was provided by the client in the 

request. 



 D2.5 Final Specification of Predictive Analytics Platform 

12 November 2018 Version 1.0 Page 49 

Confidentiality: EC Distribution 

 String dataFrameRowDataPredictionJSON – In this parameter, the service 

returns in this parameter the predicted values for each row received in the 

request’s param dataFrameRowDataJSON. The syntax of the JSON string 

(similar to that of dataFrameRowDataJSON) is the following: 
 

{"dataFrameRowDataPrediction": 
[[Row1Prediction1, Row1Prediction2, ...], 
 [Row2Prediction1, Row2Prediction2, ...], 
 [Row3Prediction1, Row3Prediction2, ...], 

... 
]} 

 

Example: (predicted values for three rows, where each predicted value is a 

double): 

 
{"dataFrameRowDataPrediction": 

[[0.9878], 
 [0.45627], 
 [0.87265] 
]} 

 

Note: The number of predicted values per row and their types is implicitly 

defined in the predictive model, but not defined in the request. Therefore, the 

client receiving the answer must know the expected number and types of 

fields. 

 String errorDescription – The description of the error when the service 

execution fails (retCode <> 0). 

 int retCode – Return code value is 0 when the service execution succeed, 

and non-zero otherwise.     

 

Example of Request  

The client sends a request as follows (Electrolux case example): 

http://localhost:8080/SafirePrdAnalyticsPredictor? 

clientId=1& 

clientTopic=Boil_detection_26-10-2018_10-57-41& 

modelName=electroluxNNTraineModelCurF08.h5& 

backendName=keras& 

dataFrameColNamesJSON= 

{"dataFrameColNames":["currentValues"]}& 

dataFrameColTypesJSON= 

{"dataFrameColTypes":["arrayDouble"]}& 

dataFrameRowDataJSON= 

{"dataFrameRowData":[[[1.54418102,  1.48782741, ... ]]]} 
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Example of Answer 

The service processes the request and answers with the following: 

ClsSafirePrdAnalyticsPredictorWebServiceAnswer { 

callCount=1,  

clientId=1,  

clientTopic= Boil_detection_26-10-2018_10-57-41, 

modelName=electroluxNNTraineModelCurF08.h5,  

backendName=keras, 

prediction={"dataFrameRowDataPrediction":[[0.9015398025512695]]},  

errorDescription=””,  

retCode=0} 

In this particular case, the answer contains the prediction of the single sample passed as 

parameter being boiling (90,15%). 

Invoking the Prediction Service from a Web Navigator 

The Prediction Service will also be callable from a Web navigator. Figure 4-8 shows a 

call to the service executed from a web navigator (in this case Google Chrome) and the 

response given by the service (the same as shown in Section 4.4.3.1). 

 

Figure 4-8 – Predictive Analytics Web Service Call from a Web Navigator. 

Template for invocation from a Java Client Specifications 
 

SAFIRE full prototype will develop Source Code templates for an easy development of 

REST java clients. These templates will be fully explained in the final full prototype 

development report. As an example of specifications, a template will be composed by 

the two classes described below. 

Class ClsSafirePrdAnalyticsPredictorWebServiceAnswer 

This class represents a Java client. Only the section with TODO must be modified by the 

end-user using the template: 

@SpringBootApplication 
public class ClsSafireWebServiceRestClientTemplate  { 
 
 private static final Logger log =  

LoggerFactory.getLogger(ClsSafireWebServiceRestClientTemplate .class); 
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 public static void main(String args[]) { 
  SpringApplication.run 

(ClsSafireWebServiceRestClientTemplate .class); 
 } 
  
 @Bean 
 public RestTemplate restTemplate(RestTemplateBuilder builder) { 
  return builder.build(); 
 } 
 
 @Bean 
 public CommandLineRunner run(RestTemplate restTemplate) throws Exception { 
   
  return args -> { 
    
   // Call service 
   CallService(restTemplate); 
  }; 
 } 
  
 private void CallService(RestTemplate restTemplate) { 
   
  // TODO 
  // Define call parameters 
  String port = "8080"; 
  long clientId = 1; 
  String topic = "Boil_detection_29-oct-2018_12-08-00"; 
  String modelName = "electroluxNNTraineModelCurF08.h5"; 
  String backendName = "keras"; 
   
  // TODO 
  // Generate the sample to predict 
  // The key dataframe elements must be defined 
  // The columns names, types and data values 
  String dataFrameColNamesJSON =  
    "{\"dataFrameColNames\":[\"currentValues\"]}"; 
  String dataFrameColTypesJSON =  
    "{\"dataFrameColTypes\":[\"arrayDouble\"]}"; 
  String dataFrameRowDataJSON =  
    "{\"dataFrameRowData\":" 
    + "[[[1.456, 2.3456, 3.2345, 1.3456]]," 
    + "[[2.3737, 4.2829, 1.2876, 8.7625]]}"; 
 
  // Encode the data frame elements  
  // This is necessary as they contain reserved chars for http requests 
  dataFrameColNamesJSON =  

UriUtils.encodeQueryParam(dataFrameColNamesJSON,"UTF-8"); 
  dataFrameColTypesJSON =  

UriUtils.encodeQueryParam(dataFrameColTypesJSON,"UTF-8"); 
  dataFrameRowDataJSON =  

UriUtils.encodeQueryParam(dataFrameRowDataJSON,"UTF-8"); 
   
  // Build the call to the prediction service 
  String serviceCall =  
   "http://localhost:" + port + "/SafirePrdAnalyticsPredictor?" +  
   "clientId=" + String.valueOf(clientId) + "&" + 
   "clientTopic=" + topic + "&" + 
   "modelName=" + modelName + "&" + 
   "backendName=" + backendName + "&" + 
   "dataFrameColNamesJSON=" + dataFrameColNamesJSON  + "&" + 
   "dataFrameColTypesJSON=" + dataFrameColTypesJSON  + "&" + 
   "dataFrameRowDataJSON=" + dataFrameRowDataJSON; 
   
  // Call the prediction service 
  ClsSafirePrdAnalyticsPredictorWebServiceAnswer answer =  

restTemplate.getForObject 
(serviceCall,  
ClsSafirePrdAnalyticsPredictorWebServiceAnswer.class); 

   



D2.5 Final Specification of Predictive Analytics Platform   

Page 52 Version 1.0 12 November 2018 

Confidentiality: EC Distribution 

  // TODO 
  // Process the answer 
  // In this case just print to log 
  log.info(answer.toString()); 
 } 
} 

Class ClsSafirePrdAnalyticsPredictorWebServiceAnswer 

This class represents the answer given by the prediction service and does not need any 

modifications, and can be used as-is: 

@JsonIgnoreProperties(ignoreUnknown = true) 
public class ClsSafirePrdAnalyticsPredictorWebServiceAnswer { 
 
    // Represents an automatic counter 
    // with the number of times the 
    // service has been requested 
    private long callCount; 
     
    // Id value passed by the caller 
    // Will be returned back as it is 
    private long clientId; 
     
    // Topic value passed by the caller 
    // Will be returned back as it is 
    private String clientTopic; 
     
    // Prediction Model name 
    // requested by the caller 
    private String modelName;  
     
    // Prediction engine backend 
    // requested by the caller 
    // Allowed values are: spark, keras 
    private String backendName;  
     
    // List of Predicted Data Frame Rows values 
    // Contains a JSON list with the Predictied Rows 
    // produced by the model. It is responsible 
    // of the caller to interprete the meaning of 
    // the values 
    private String dataFrameRowDataPredictionJSON;     
     
    // Error description 
    // when retCode != 0 
    private String errorDescription; 
     
    // 0-Success, <>0-Error 
    private int retCode;     
 
     
     
    public ClsSafirePrdAnalyticsPredictorWebServiceAnswer() { 
    } 
 
    public long getCallCount() { 
        return callCount; 
    } 
    public void setCallCount(long callCount) { 
        this.callCount = callCount; 
    } 
     
    public long getClientId() { 
        return clientId; 
    } 
    public void setClientId(long clientId) { 
        this.clientId = clientId; 
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    } 
     
    public String getClientTopic() { 
        return clientTopic; 
    } 
    public void setClientTopic(String clientTopic) { 
        this.clientTopic = clientTopic; 
    } 
     
    public String getModelName() { 
        return modelName; 
    } 
    public void setModelName(String modelName) { 
        this.modelName = modelName; 
    } 
     
    public String getBackendName() { 
        return backendName; 
    } 
    public void setBackendName(String backendName) { 
        this.backendName = backendName; 
    } 
 
    public String getDataFrameRowDataPredictionJSON() { 
        return dataFrameRowDataPredictionJSON; 
    } 
    public void setDataFrameRowDataPredictionJSON(String dataFrameRowDataPredictionJSON) { 
        this.dataFrameRowDataPredictionJSON = dataFrameRowDataPredictionJSON; 
    } 
     
    public String getErrorDescription() { 
        return errorDescription; 
    } 
    public void setErrorDescription(String errorDescription) { 
        this.errorDescription = errorDescription; 
    } 
     
    public int getRetCode() { 
        return retCode; 
    } 
    public void setRetCode(int retCode) { 
        this.retCode = retCode; 
    } 
 
    @Override 
    public String toString() { 
        return "ClsSafirePrdAnalyticsPredictorWebServiceAnswer {" + 
                "callCount = " + Long.toString(callCount) +  
                ", clientId = " + Long.toString(clientId) +  
                ", clientTopic = " + clientTopic + 
                ", modelName = " + modelName +  
                ", backendName = " + backendName +  
                ", prediction = " + dataFrameRowDataPredictionJSON + 
                ", errorDescription = " + ((retCode != 0) ? errorDescription : "Ok") + 
                ", retCode = " + Long.toString(retCode) + 
                '}'; 
    } 
} 
 

Speed Specifications 

The SAFIRE project aims at real-time processing and therefore Web Service execution 

time must meet that requirement. However, real-time is a concept relative to the 

application and the requirements can be different for each application. For example, in 

the case of Electrolux boiling detection, real-time means basically the order of one 
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second. Execution speed depends obviously on the connection but also in the predictive 

model complexity. 

As a general requirement, for medium size models and good quality connection, real-

time requirement will be understood as execution time in the order of a few seconds. 

 

4.4.3.3 Modelling and training Templates  

SAFIRE’s full prototype will develop Source Code templates for an easy development 

of predictive model definition and training. Examples developed for Business Cases 

will be developed as instances of theses templates and will be fully explained in the full 

prototype report.  

As an example of template, below is the python source code for a simple template of a 

logistic regression (this function is part of several source code files). 

def trainModelLR(dataFrame, dataFrameFeatureColNames): 
     

 # Assemble the input to produce the features column 
    assembler = VectorAssembler(inputCols=dataFrameFeatureColNames, outputCol="features") 
 

 # TODO 
 # Select the machine learning algorithm and its parameters 
 # In this case a Logistic Regression has been selected 

    lr = LogisticRegression(maxIter  = 100, regParam = 0.01) 
     

 # Chain in a pipeline the transformations  
 # and machine learning algorithm 

    pipeline = Pipeline(stages = [assembler, lr]) 
       

 # TODO 
 # Create a Parameter Grid for Cross Validation 
 # Assign a range to the hyper parameter for fine-tuning   

    paramGrid = (ParamGridBuilder() 
                .addGrid(lr.regParam, [0.01, 0.1, 0.3, 0.5]) # regularization parameter 
                .addGrid(lr.maxIter, [10,25, 50, 100]) # regularization parameter 
                .addGrid(lr.elasticNetParam, [0.0, 0.1, 0.2]) # Elastic Net Parameter(Ridge=0) 
                .build()) 
 

 # Define cross validation model 
    crossval = CrossValidator(estimator=pipeline, 
                              estimatorParamMaps=paramGrid, 
                              evaluator=BinaryClassificationEvaluator(), 
                              numFolds=5)   
 

 # Fit (train) the model 
    model = crossval.fit(dataFrame) 
     

 # Return the model bestModel 
    return model 

 

As another example of template, below is the python source code for a simple template 

of a random forest tree (this function is part of several source code files). It is 

interesting to note here that, following Spark’s philosophy, it is very easy to interchange 

the algorithms to use to experiment with different alternatives. The code of the logistic 

regression and the random forest tree is very similar. 

def trainModelDT(dataFrame, dataFrameFeatureColNames): 
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 # Assemble the input to produce the features column 

    assembler = VectorAssembler(inputCols=dataFrameFeatureColNames, outputCol="features") 
     

 # TODO 
 # Select the machine learning algorithm and its parameters 
 # In this case a Decision Tree Classifier has been selected 

    dt = DecisionTreeClassifier() 
     

 # Chain in a pipeline the transformations  
 # and machine learning algorithm 

    pipeline = Pipeline(stages = [assembler, dt]) 
     

 # TODO 
 # Create a Parameter Grid for Cross Validation 
 # Assign a range to the hyper parameter for fine-tuning   

    paramGrid = (ParamGridBuilder() 
                .addGrid(dt.maxDepth, [5, 10, 15, 20])  
                .addGrid(dt.maxBins, [5, 10, 20, 40])  
                .build()) 
 

 # Define cross validation model 
    crossval = CrossValidator(estimator=pipeline, 
                              estimatorParamMaps=paramGrid, 
                              evaluator=BinaryClassificationEvaluator(), 
                              numFolds=5)   
 

 # Fit (train) the model 
    model = crossval.fit(dataFrame) 
     

 # Return the trained model 
    return model 

 

4.4.3.4 Testing with Electrolux BC 

Implementation in the final prototype will be tested with the Electrolux Boiling Point 

detection test case. Figure 4-9 shows the on-line detection process. First (1) the cooking 

process is continually (second by second) uploading currents data (currents in the coil), 

(2) the predictive analytics prediction service is called to decides if (with the data 

available so far) the water is boiling, and (3) when the water is boiling, the cook is 

notified. 

 

Figure 4-9.  Electrolux – Online estimation of boiling point. 
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Predictive Analytics source code templates will be used to experiment with different 

deep learning alternatives to show the power of SAFIRE to predict the boiling point of a 

cooking process (Figure 4-10). Alternatives to test in full prototype will be: 

 Spark – Define Regressions, Decision Trees, etc. 

 Keras/TensorFlow – Define neural networks alternatives to those already 

experimented in the early prototypes (with good results). 

 

 

Figure 4-10. Electrolux Boling Experiment showing detail of water temperature and current F09. 

 

4.4.3.5 Testing with ONA Electroerosion BC 

Implementation in the final prototype will be tested, among others, with the ONA 

Electroerosion WEDM cutting process test case, trying to detect the event of width 

changing during cutting (Figure 4-11). 
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Figure 4-11: WEDM cutting with changing thickness parts. 

WEDN process is generated by short electrical discharges between the cutting wire of 

the machine and the part to be machined through a dielectric fluid (deionised water). 

Figure 4-12 shows the voltage/time profile of several discharges.   

 

Figure 4-12: Voltage profile of several discharges. 

 

Predictive Analytics work initiated in the ONA test case in the Early prototype, trying to 

predict the width changing from the discharges voltage patterns, will be completed in 

the full prototype by using source code templates to generate experiment with different 

deep learning alternatives to show the power of SAFIRE to predict the part’s width 

change in advance. Alternatives to test in full prototype will be: 

 Spark – Define Regressions, Decision Trees, etc. 

 Keras/TensorFlow – Complete neural networks experiments initiated in the 

early prototype. 

 

 

4.4.4 Data Quality Assurance Specification 

Big data technologies were developed because traditional technologies (and the human 

beings using them) could not handle such amounts of data, and they carry out a great 

deal of automation and algorithmic decision making. This lesser human involvement 
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means that the quality of the data carries even greater importance than it did before data 

went “big”. 

There is no consensus on how to define data quality. However, it is commonly 

measured in six dimensions in the literature: completeness, timeliness, conformity, 

integrity, consistency and accuracy. The following sections describe how data quality 

issues could raise in any of these dimensions, and how they are tackled in the data 

ingestion module of the SAFIRE project. 

 

Figure 4-13. Dimensions of Data Quality. 

Completeness 

Completeness refers to all necessary data being present. Data can be complete without 

all fields having values because some fields are optional, such a person’s middle name 

or secondary phone number. 

In SAFIRE’s data ingestion module, data is dumped into two independent services: a 

relational database for persistence, and a publish/subscribe broker for further 

redistribution of data. The check for completeness is carried out by the relational 

database. In most relational databases, fields of a table can be declared either as 

allowing a missing (null) value or not. A null value represents a field without a value. In 

such cases, if a row with a null value for a field not declared as allowing null is 

attempted to insert, the insertion will fail and raise and error. 

Timeliness 
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Timeliness refers to whether the data is available or not when it is expected to be. For 

example if data from Monday is available at midnight on Tuesday to generate daily 

reports. Timeliness issues can raise from a wide variety of problems: a thunderstorm 

could take down the power of a server, another server might be running out of memory 

or disk space, slowed down significantly and stopped accepting new incoming data… if 

any link in a chain fails, it will result in the rest of the data pipeline not being able to 

comply to timeliness. This dimension is one of the hardest to ensure because full 

connectivity is usually out of the developer’s control and issues can keep happening 

even if the rest of the system has been thoroughly tested and corrected. Also, any other 

dimension not being met will cause timeliness issues because the data pipeline will be 

halted by the issue. 

In SAFIRE, we first tackled this by adding a monitoring node within the data ingestion 

system. This monitor observes the industrial data incoming from their respective API 

and waits until the data stream is stopped. If no new messages are received within a 

small but significant amount of time, an alarm is raised and the operator gets an email 

with the latest log file from the data ingestion system. The stream can be cut by 

different errors that can be grouped into two groups: 

 Expected errors such as disconnections from either the server, or local network. 

 Unexpected errors that have not been handled yet. 

Expected errors are already handled by the system and trigger a reattempt after a 

prudent delay of a few seconds or minutes so as to avoid unnecessary attempts until the 

connection is restored. Unexpected errors, on the other hand, are unrecoverable until 

they have been analyzed and the system has been adjusted to handle them. In these 

instances, the operator receiving the latest log file ensures that the log containing the 

error will not be lost if the operator is not quick enough to identify the cause in the time 

it takes the temporary log file to be overwritten. 

If the stream is restored, for example when a reconnection attempt has succeeded, the 

operator also receives an email with a notification so as to avoid unnecessary workload 

if the error has been handled. 

However, this is just one small attempt to ensure data timeliness. The system that was 

just described is an internal mechanism; it is part of the system that it monitors. If the 

entire server or datacenter fails, the monitor system will shut down as well, and no alert 

will be generated. This system has to be complemented with an external monitoring 

system that checks whether the data ingestion module has placed the data where it is 

supposed to do.  

Conformity 

The conformity dimension refers to whether data complies with a set of predefines 

standards. Examples of these standards can be dates following the same “yyyy-MM-dd” 

format or the messages following the same JSON structure. 
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The data ingestion system makes several checks in this regard: 

 As soon as JSON messages are received through the data stream, it is checked 

that they do contain the expected data node. 

 When messages are processed, it is done so in a way that if they do not conform 

to the expected format, the processing will fail and raise an alert. 

 Dates are handled using the expected format. The process will fail if the format 

is not the expected. 

Integrity 

This dimension refers to each piece of data being connected to other data. For example, 

a violation of this dimension would be, in the domain of manufacturing, a machine 

having a location field pointing to a location not present in the database. 

Just like with the Completeness dimension, the control over the integrity dimension is 

carried out by the relational database. Relational databases describe tables and the 

relationships between them, and if configured to do so, enforce that these relationships 

are met. Returning to the example presented before, a relational database will not allow 

the insertion of a machine record, if the location of this record points to a location not 

present in the location table. 

Consistency 

Data being consistent means that all systems reflect the same information. This does not 

necessarily only refer to two identical fields in two datasets having the same value, but 

also cases where one value can be inferred from another, for example birthday and age. 

This usually requires creating a monitoring system independent of any data repository 

that periodically checks the consistency of data across different systems by checking it 

against a predefined set of specific rules. 

In SAFIRE, the data ingestion module has such a monitoring system. However, none of 

the use cases require of value inference so only direct comparisons between data items 

in different systems are made. 

 

Accuracy 

Data accuracy is one of the hardest dimensions to measure, because it is hard to assess if 

data is accurate or not without assuming the first data entry point already receives 

accurate data. However it is a very important dimension, because if data is detected not 

to be accurate, the depending data pipelines should be killed. 

On the one hand, data can be checked against a predefined schema to assess the 

accuracy of the structure of the data. On the other hand, checking for values requires 

other approaches. Some data fields can only have a finite set of values. In these cases, at 
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least a sanity check can be performed to see if whether the actual value belongs to this 

finite set. With numerical fields that can take an infinite number of values, checking 

these values can get tricky. These fields present variability by nature, and it can be hard 

to define how much of variability is acceptable: too low of a threshold and a lot of false 

positives will be generated, leading to incident fatigue and the human operator ignoring 

future alerts to his or her own discretion; too high of a threshold and most incidents will 

go unnoticed, damping the effectiveness of the monitoring. A middle ground can be 

achieved establishing two thresholds. If the variability crosses the first threshold (e.g. 

10%), the process will continue but a human operator will be alerted and urged to check 

whether the variability is legitimate. If the variability crosses the second threshold (e.g. 

30%), the human operator will also be alerted, but in this case the process will be 

stopped. 

In SAFIRE’s data ingestion module the data’s structure is checked against schemas in 

various steps of the process. The values of discrete fields are handled by the integrity 

checking measures of the relational database as all the possible values for discrete 

variables are stored in their respective tables. Finally, regarding numeric fields that can 

take an infinite number of values, a threshold-based monitoring system has been put in 

place. This monitoring system will be configured with acceptable ranges for each of the 

monitored fields. The two threshold system described in the paragraph above will be 

implemented. 

4.4.5 GDPR Compliance Specification 

Currently, none of the use cases of the SAFIRE project handle personal data. However, 

if future cases where the SAFIRE technologies and methodologies are applied, do 

handle personal data, and this data pertains to EU citizens, the businesses handling this 

information will have to comply with Regulation (EU) 2016/679, also known as the 

General Data Protection Regulation or GDPR. 

This regulation came into effect on May 25
th

, 2018 and aims to protect personally 

identifiable data (PII) every step of the way while giving the consumer ultimate control 

over what happens to that data. Any business handling PII of European Union citizens 

must adhere to this regulation, even in the company itself resides outside of the EU. 

Consent must be requested in a clear, easy to understand way, with users knowing 

exactly what they are giving their consent to. Consumers must be provided with tools to 

control, monitor, check, and delete data related to them if they want to. In fact, revoking 

consent should be made as easy as giving it. 

The GDRP also regulates the protection of the PII. The regulation promotes 

pseudonymisation of data: where business logic data is anonymised by removing the 

identifiable data but keeping some sort of way to single out an individual user, for 

example using a “user id”, and keeping the PII data somewhere else. Other accepted 

approaches are the complete anonymisation of data so it cannot be tied back to an 

individual, or encryption. For some types of organizations the GDPR requires hiring a 

Data Protection Officer (DPO). Furthermore, the regulation requires mandatory breach 

notification to affected individuals within 72 hours of the discovery. 



D2.5 Final Specification of Predictive Analytics Platform   

Page 62 Version 1.0 12 November 2018 

Confidentiality: EC Distribution 

Another aspect related to big data and covered by the GDPR is profiling: algorithmic 

inference drawn from data about an individual, a tool widely used in big data. The 

GDRP regulates the use of profiling by trying to distinguish benign and harmful uses of 

it and allowing citizens not to be subject to fully automated profiling. The definition of 

harmful uses of profiling was discussed throughout the development of the regulation as 

“which produce(s) legal effects concerning him or her or similarly significantly affects 

him or her”. The goal of the regulation is not to forbid the use of profiling, but 

providing the affected individuals with information about the logic behind it, the 

significance and consequences of it for the individual, disclosing the use of such 

automated decision-making upon request, and the basis to request human intervention in 

the process, and providing the individual with the right “to express his or her point of 

view and to contest the decision”. 

Currently, none of the use cases of the SAFIRE project handle personally identifiable 

data. Given the manufacturing application field of the project, it is unlikely that even 

future implementation cases will handle such data. However it is possible that such 

unforeseen new cases might come to be. In these cases, the involved companies must 

comply to the GDPR if they handle data pertaining EU citizens. 

 

4.5 SPECIFICATION OF HIGH-LEVEL ARCHITECTURAL DESIGN 

The Full Prototype architecture consists in a set of Virtual machines running in a 

secured public cloud environment, more concisely in a Virtual Private Cloud that is 

secured as it is running inside a private isolated network. Each machine will be 

provisioned with different software tools and configured to support most of the 

platform’s required features. 
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 Figure 4-14.  Early end Full Prototype architecture. 

In Figure 4-13 the overall architecture can be seen. Below is the description of the 

different components:  

 Bastion host: This machine will be the entry point of the platform for external 

users providing a secured VPN tunnel for accessing the private network and 

therefore allowing access to the different services. 

 GUI Machines (Superset/Zeppelin): this machine will be the entry point for both 

data science prototyping via Zeppelin and advanced visualization via Superset. 

 Cassandra/Spark: this machine will be provisioned with the No-SQL database 

along with the distributed analytics engine.  

 PostgreSQL: this is the relational SQL database in charge of storing relational 

data of the platform. In this case, the one provided by Amazon Web Services 

will be used as it will allow us to use a standard database without taking care of 

its maintenance.  

 Amazon S3: Amazon S3 is a Software as a Service (SaaS) that provides storage 

service through web service interfaces. It allows storing data in a reliable way 

easily and has support for almost all the Big Data landscape tooling. 
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5. TECHNOLOGY SPECIFICATION OF SOFTWARE TOOLS 

This section provides a list of software tools to be used for the Predictive Analytics 

Platform. All tools are open-source software. 

 Java 

Programming Language – www.java.com 

 Python 

Programming Language - https://www.python.org/ 

 IDE Eclipse 

Development Environment – http://www.eclipse.org 

 Apache Tomcat 

Runtime Environment/Application Server - http://tomcat.apache.org/ 

 Apache NiFi 

Scalable data routing, transformation, and system mediation logic - 

https://nifi.apache.org/  

 Apache Kafka 

Distributed Streaming Platform - https://kafka.apache.org/  

 Apache Spark 

Unified analytics engine for large-scale data processing - https://spark.apache.org/  

 Apache Cassandra 

Distributed NoSQL database management system- https://cassandra.apache.org/ 

 Apache Zeppelin 

Web-based notebook that enables data-driven, interactive data analytics and 

collaborative documents with SQL, Scala and more- https://zeppelin.apache.org/ 

 Apache Superset 

Business intelligence web application - https://superset.apache.org/ 

 Redis 

In-memory data structure store, used as a database, cache and message broker- 

https://redis.io/ 

 Terraform 

Tool for building, changing, and versioning infrastructure as code, safely and 

efficiently - https://www.terraform.io 

 Ansible  

http://www.java.com/
https://www.python.org/
http://www.eclipse.org/
http://tomcat.apache.org/
https://nifi.apache.org/
https://kafka.apache.org/
https://spark.apache.org/
file:///D:/prj/europeos/safire/svn/WP2/D-2.2/Distributed
https://en.wikipedia.org/wiki/NoSQL
https://en.wikipedia.org/wiki/Database
https://cassandra.apache.org/
https://redis.io/
https://www.terraform.io/
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Software that automates software provisioning, configuration management, and 

application deployment - https://www.ansible.com/ 

 Keras  

High Level Neural Networks - https://keras.io/  

 Tensor Flow 

Machine Learning Software - https://www.tensorflow.org/  

 Deeplearning4j  

Library of deep learning for Java - https://deeplearning4j.org/  

 Spring 

Web Application Framework -  http://www.springsource.org/ 

 Hibernate 

Data Persistence - http://hibernate.org/ 

 Docker  

Software Containerization Platform - https://www.docker.com/  

 GIT,  

Version Control - http://git-scm.com/ http://git-scm.com/    

 

6. FULL PROTOTYPES FEATURE SET 

The full prototype presents the current feature set: 

 Integration with Apache Kafka for data ingestion. 

 Real-time/batch analytics capabilities using Spark Manchine Learning MLlib 

library and advanced analytics using Tensorflow & Keras. 

 Data Science rapid Prototyping using Apache Zeppelin, this tool allows basic 

visualizations too. 

 NoSQL storage using Cassandra. 

 Platform High Availability.  

 SQL storage using PostgreSQL. 

 Advanced Visualization capabilities using Apache Superset. 

 REST APIs for interaction with other SAFIRE modules.  

 Scripting using Terraform and Ansible for deployment of the platform on 

Amazon Web Services 

https://www.ansible.com/
https://keras.io/
https://www.tensorflow.org/
https://deeplearning4j.org/
http://www.springsource.org/
http://hibernate.org/
https://www.docker.com/
http://git-scm.com/
http://git-scm.com/
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7. REQUIREMENTS COVERAGE 

7.1 DATA MINING AND ANALYTICS REQUIREMENTS FROM INDUSTRIAL BUSINESS 

CASES 

This table represents the coverage for the full prototype.  

Req. 
No. 

Requirement Overall Priority Coverage 

U78 Supports data mining to extract useful 
patterns about operator behaviour 

SHALL True 

U79 Supports data mining to extract useful 
patterns about machine status 

SHALL True 

U80 Supports data mining to extract useful 
patterns about production process 
status 

SHALL True 

U81 Provides support for selection of 
sensors / systems to be analysed 

SHALL True 

U82 Provides support for selection of 
information sources to be analysed 

SHALL True 

U83 Provides support for data/sensor 
composition functionality 

SHALL False 

U84 Able to provide historical knowledge 
about system deviations or problems 

SHOULD True 

U85 Able to provide decision support for 
production line selection 

SHOULD False 

U86 Able to increase visibility of the 
production process 

SHALL True 

U87 Supports analysis for algorithm 
definition for boiling/temperature 
control functionality 

SHALL True 

U88 Supports sensitivity analysis to noise SHALL False 

U89 Supports main variation factor 
identification and robust strategy for 
minimising 

SHOULD False 

U90 Supports computational resources 
estimation of machines 

SHOULD False 

U91 Supports estimation of performance 
decrease for algorithm complexity 
reduction 

SHOULD False 

U92 Supports process repeatability and 
stability characterisation 

SHALL False 

U93 Supports Design of Experiments 
(DOE) and Analysis of Variance 

SHOULD True 
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Req. 
No. 

Requirement Overall Priority Coverage 

(ANOVA) analysis 

7.2 PERFORMANCE REQUIREMENTS FROM INDUSTRIAL BUSINESS CASES 

This table represents the coverage for the full prototype.  

Req. 
No. 

Requirement Overall Priority Coverage 

U115 Does not negatively affect the usual 
production processes 

SHALL True 

U116 Support for scalability in the size of 
cloud and computing resources 

SHALL True 

U117 Support for horizontal scalability to 
many machines 

SHALL True 

U118 Capable of real-time data ingestion 
(registering data) 

SHALL True 

U119 Capable of batch processing of data 
(offline analysis) 

SHALL True 

U120 Capable of real-time data processing   SHALL True 

U121 Capable of providing real-time 
reconfigurations / optimisations 
(subject to network throughput limits) 

SHALL True 

U122 Able to analyse relevant data within a 
given timeframe 

SHALL True 

U123 Capable of storing up to 5 
TB/year/machine with resource 
recycling facilities  

SHALL True 

U124 Provides support for Machine Learning 
(Supervised / Unsupervised / Anomaly 
Detection) 

SHALL True 

U125 Able to achieve required precision on 
cooking process estimation / 
optimisations 

SHALL True 

7.3 INTERFACE REQUIREMENTS FROM INDUSTRIAL BUSINESS CASES 

This table represents the coverage for the full prototype.  

Req. 
No. 

Requirement Overall Priority Coverage 

U130 Able to access data stored in a 
relational database 

SHALL True 

U131 Able to receive and send data from/to 
a remote location 

SHALL True 
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8. CONCLUSIONS 

This document has described the Final Specifications of the full prototype of Predictive 

Analytics Platform module to be developed in SAFIRE. The present deliverable is the 

second incremental outcome (referenced as D2.2.2 in the technical annex with name 

D2.5) of task T2.2 Specification of Predictive Analytics Platform and contains a) high 

level architectural design and b) specifications of functionalities regarding realisation of 

Predictive Analytics Platform Full prototype. 

These specifications address requirements collected within WP1 regarding the real-time 

big data predictive analytics platform to tackle the development of a full prototype of 

the platform. 
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