

Project Partners: ATB, Electrolux, IKERLAN, OAS, ONA, The Open Group, University of York

Every effort has been made to ensure that all statements and information contained herein are accurate, however the

SAFIRE Project Partners accept no liability for any error or omission in the same.

© 2018 Copyright in this document remains vested in the SAFIRE Project Partners.

Project Number 723634

D2.5 Final Specification of Predictive Analytics Platform

Version 1.0

12 November 2018

Final

EC Distribution

IKERLAN

D2.5 Final Specification of Predictive Analytics Platform

Page ii Version 1.0 12 November 2018

Confidentiality: EC Distribution

PROJECT PARTNER CONTACT INFORMATION

ATB

Sebastian Scholze

Wiener Strasse 1

28359 Bremen

Germany

Tel: +49 421 22092 0

E-mail: scholze@atb-bremen.de

Electrolux Italia

Claudio Cenedese

Corso Lino Zanussi 30

33080 Porcia

Italy

Tel: +39 0434 394907

E-mail: claudio.cenedese@electrolux.it

IKERLAN

Trujillo Salvador

P Jose Maria Arizmendiarrieta

20500 Mondragon

Spain

Tel: +34 943 712 400

E-mail: strujillo@ikerlan.es

OAS

Karl Krone

Caroline Herschel Strasse 1

28359 Bremen

Germany

Tel: +49 421 2206 0

E-mail: kkrone@oas.de

ONA Electroerosión

Jose M. Ramos

Eguzkitza, 1. Apdo 64

48200 Durango

Spain

Tel: +34 94 620 08 00

jramos@onaedm.com

The Open Group

Scott Hansen

Rond Point Schuman 6, 5
th

 Floor

1040 Brussels

Belgium

Tel: +32 2 675 1136

E-mail: s.hansen@opengroup.org

University of York

Leandro Soares Indrusiak

Deramore Lane

York YO10 5GH

United Kingdom

Tel: +44 1904 325 570

E-mail: leandro.indrusiak@york.ac.uk

 D2.5 Final Specification of Predictive Analytics Platform

12 November 2018 Version 1.0 Page iii

Confidentiality: EC Distribution

DOCUMENT CONTROL

Version Status Date

0.1 Initial Contents from D2.2 Incremental Update 11 September 2018

0.2 Additional Contents for final specs added 2 October 2018

0.9 Document Final Draft 24 October 2018

1.0 Proofreading and typos 12 November 2018

D2.5 Final Specification of Predictive Analytics Platform

Page iv Version 1.0 12 November 2018

Confidentiality: EC Distribution

TABLE OF CONTENTS

1. Introduction ... 7

1.1 Document purpose ... 7

1.2 Progress beyond D2.2 Early Specification of Predictive Analytics Platform ... 7

1.3 Approach Applied .. 8

2. Background of Existing Technologies ... 9

2.1 Big Data Frameworks ... 9

2.2 Analytical Techniques Background ... 10
2.2.1 Regression Techniques ... 11
2.2.2 Machine Learning Techniques .. 13

2.3 Machine Learning Algorithms in Apache Spark.. 14
2.3.1 Core Concepts ... 14
2.3.2 MLib - Conceptual main classes ... 17
2.3.3 Algorithms in Spark’s Machine Learning Library (MLlib) .. 19
2.3.4 Hyperparameter tuning ... 23
2.3.5 Spark, TensorFlow, Keras and Deeplearning4j .. 25

2.4 Other Predictive Analytics Software ... 26
2.4.1 Open-Source Software .. 26
2.4.2 Commercial Software ... 27
2.4.3 Interoperability of Predictive Analytics Software ... 28

2.5 Related EU Projects ... 30

3. Innovation .. 31

3.1 Dataflow architecture .. 32

3.2 Predictive analytics elasticity .. 32

3.3 Predictive analytics service ... 33

4. Predictive Data Analytics Platform Module Specifications ... 34

4.1 Specifications to handle General Requirements .. 34
4.1.1 Requirements .. 34
4.1.2 Specifications .. 35

4.2 Specifications to handle Cross-Components Requirements .. 36
4.2.1 Requirements .. 36
4.2.2 Specifications .. 36

4.3 Specifications to handle Industrial Business Case Requirements ... 36
4.3.1 Requirements .. 37
4.3.2 Specifications .. 39

4.4 Specification of Generic Functionalities ... 39
4.4.1 Data Collection/Storage Functionality Specification .. 40
4.4.2 Data Query Functionality Specification .. 44
4.4.3 Predictive Modelling Functionality Specification ... 44
4.4.4 Data Quality Assurance Specification .. 57
4.4.5 GDPR Compliance Specification .. 61

4.5 Specification of High-Level Architectural Design ... 62

5. Technology Specification of Software Tools ... 64

6. Full Prototypes feature set .. 65

7. Requirements coverage ... 66

 D2.5 Final Specification of Predictive Analytics Platform

12 November 2018 Version 1.0 Page v

Confidentiality: EC Distribution

7.1 Data Mining and Analytics Requirements from Industrial Business Cases .. 66

7.2 Performance Requirements from Industrial Business Cases ... 67

7.3 Interface Requirements from Industrial Business Cases ... 67

8. Conclusions .. 68

9. References .. 69

D2.5 Final Specification of Predictive Analytics Platform

Page vi Version 1.0 12 November 2018

Confidentiality: EC Distribution

EXECUTIVE SUMMARY

The document presents the final specifications of the Predictive Analytics Platform and,

as stated in the technical annex of the project, is an incremental update of the

deliverable D2.2 Early Specification of Predictive Analytics Platform.

The deliverable contains (a) a review of current big data and predictive analytics

techniques, (b) a summary of innovations to be developed in the project, (c)

specifications for the component are defined, tracing them back to the requirements

stated in previous deliverables, (d) a classification of the specifications according to the

requirements they handle (general requirements, cross-component requirements and

industrial business case requirements) and finally (e) a list of software tools to be used

in the development of the software components.

 D2.5 Final Specification of Predictive Analytics Platform

12 November 2018 Version 1.0 Page 7

Confidentiality: EC Distribution

1. INTRODUCTION

1.1 DOCUMENT PURPOSE

The current document presents the deliverable D2.5 – Final Specification of Predictive

Analytics Platform, of the project SAFIRE - Cloud-based Situational Analysis for

Factories providing Real-time Reconfiguration Services. This document was compiled

by enhancing D22 Early Specifications of Predictive Analytics Platform with additional

contents to produce a self-contained final deliverable D2.5 - Specifications of Predictive

Analytics Platform

The work described here is part of the T2.2 Specification of Predictive Analytics

Platform for the WP2 – Predictive Analytics Platform. The objective of task T2.2 is to

address specific problems and requirements collected within WP1, through the

specification of the architectural design decisions for the SAFIRE platform for real-time

big data analytics.

1.2 PROGRESS BEYOND D2.2 EARLY SPECIFICATION OF PREDICTIVE ANALYTICS

PLATFORM

This final specification document is a follow-up to “D2.2 Early Specification of

Predictive Analytics Platform”. This section outlines the main additions to that

specification:

 Specification of the Predictive Analytics Platform Module regarding the

dimensions of data quality.

 Specification of the Predictive Analytics Platform Module regarding the

compliance of big data technologies to the European General Data Protection

Regulation (GDPR).

 Enhanced specification of available machine learning algorithms and core

concepts of Spark available for Predictive Analytics Platform.

 Update the requirements coverage table in Section 7.

 Specification of the Predictive Analytics Prediction REST Web Service.

 Description of Source Code templates for Predictive Analytics Prediction REST

Web Service Clients development to be developed in the full prototype.

 Specification of testing to be done in business cases with the full prototype.

D2.5 Final Specification of Predictive Analytics Platform

Page 8 Version 1.0 12 November 2018

Confidentiality: EC Distribution

1.3 APPROACH APPLIED

The Final Specification of Predictive analytics presented here is the result of a process

already started in SAFIRE Concept and the following previous deliverables:

 D1.1 Application Scenarios Requirements Analysis.

 D1.2 Optimisation Metrics and Benchmarking.

 D1.3 Business Cases Infrastructure Specification.

 D1.4 SAFIRE Concept.

 D2.2 Early Specifications of Predictive Analytics Platform.

In short, the steps followed to compile this deliverable were as follows:

 First, predictive analytics requirements specified by industrial business cases,

cross components requirements and general requirements for a predictive

analytics platform have been analysed.

 Next, a review of existing technologies in big data and predictive analytics has

been conducted, trying to focus the research in the requirements described above.

 Finally, the early specifications deliverable has been enhanced with additional

specifications to finally produce this deliverable.

The structure of the document is organized as detailed below:

 Section 1, Introduction - Includes a concise overview of the overall content of

the document, mentioning; document purpose, progress beyond D2.2, approach to

produce this document and structure of the document.

 Section 2, Background of Existing Technologies - Provides an introduction to

the state-of-the-art in big data, predictive analytics techniques and some related

EU projects.

 Section 3, Innovations - Provides a summary of innovations developed in

Predictive Analytics Platform module.

 Section 4, Predictive Analytics Platform Module Specifications - Provides a

description of the specifications, classified according to the requirements they are

handling: general requirements, cross-components requirements and industrial

business cases requirements. And presents a high-level architectural design of the

full prototype.

 Section 5, Technology Specification of Software Tools - Provides a list of

software tools that can be used in the component.

 Section 6, Full Prototypes feature set - Provides a list of features available on

the Full Prototype.

 Section 7, Requirements coverage - Provides a detailed coverage of each BC

requirement.

 D2.5 Final Specification of Predictive Analytics Platform

12 November 2018 Version 1.0 Page 9

Confidentiality: EC Distribution

 Section 8, Conclusions - Finally, this section provides a brief final summary of

the document.

 Section 9, References - References are depicted in this section.

2. BACKGROUND OF EXISTING TECHNOLOGIES

Predictive Analytics is a broad set of techniques ranging from statistics to machine

learning with the aim of analyzing data (historical data, real-time data, data traces, etc...)

in order to, for example, predict future values of the data, find relationships or discover

behavioural patterns.

In this context, big data analytics is the process of applying predictive analytics to very

large datasets to uncover hidden patterns, unknown correlations, customer preferences

and other useful business information. Big data analytics has been successfully applied

to real world industrial use cases, bringing in a number of benefits related to advanced

manufacturing. Nowadays, the main focus is to obtain predictions using real-time

techniques. As a case in point, maintenance predictions derived from real-time data

analytics of worldwide operating products and operating systems is a reality on many

industrial domains.

Sections below analyse background of existing technologies along four main axes:

 Big Data Frameworks.

 Analytical Techniques background.

 Predictive Analytics Software.

 Related EU Projects.

2.1 BIG DATA FRAMEWORKS

Big data frameworks enable organizations to store, manage and manipulate vast

amounts of disparate data. The Hadoop File System [1] (HDFS) is the de facto standard

framework that allows massive data storage in its native form to speed up analysis and

insight. The Hadoop framework implements its own approach to programming

distributed computing, called Map Reduce [1]. There are many pure Hadoop providers

such as Cloudera, Hortonworks, MapR, Pivotal or TeraData that integrate Hadoop with

other frameworks for a complete solution. On the other hand, the biggest cloud

providers (Amazon AWS [2], Google Cloud [3], and Microsoft Azure [4]) offer

complete elastic solutions with a pay-per-use business model. Moreover, companies

such as IBM [5], SAP [6], and GE [7] also offer global solutions for industry on a single

platform that combines these technologies with tools for predictive analytics.

D2.5 Final Specification of Predictive Analytics Platform

Page 10 Version 1.0 12 November 2018

Confidentiality: EC Distribution

Apart from HDFS, the organizations that require real-time access to their big data

warehouse use NoSQL databases such as MongoDB [8] and Cassandra [9] which are

compatible with the Hadoop ecosystem and being horizontally scalable too. NoSQL

databases are present nowadays as an alternative to HDFS on big data systems where

the data is frequently accessed in real-time [10][11]. Nevertheless, this kind of

databases do not have the query capabilities of the SQL ones leading to the

development of NewSQL [12] databases that have both the scalability of NoSQL and

the query capabilities of SQL databases.

Moreover, organizations require Analytics to gain insights in their data. Predictive

Analytics use data mining analytics, as well as predictive modelling to anticipate what

will likely happen in the future based on insights gained through descriptive and

diagnostic analytics. The ability to predict what is likely to happen next, is essential to

improve the overall performance of manufacturing systems, especially product

operations such as maintenance and utilisation. Using machine learning techniques,

patterns can be found in historical operational data and real-time data to signal what is

ahead. Lee et al. [13] describe recent advances and trends in predictive manufacturing

systems in big data and cloud environment manufacturing.

Beyond the Hadoop approach for batch analytics, real-time capable processing

frameworks such as Flink [14] or Spark [15] have been adopted quickly as an

alternative to Map Reduce. These new approaches claim to be 100 times faster than

Hadoop because of their in-memory processing capabilities. Spark and Flink provide a

unique engine for batch and real-time big data analytics, simplifying the operation and

maintenance of the system. Furthermore, they are interoperable with the wider Hadoop

ecosystem providing specific libraries for machine learning.

These kinds of platforms are usually deployed following the so-called Lambda

Architecture [16]. However, a Lambda Architecture is inherently complex as batch data

and real-time data are processed on different paths. For this reason, the Kappa

Architecture [17] was born as an effort to simplify the architectures of real-time big data

platforms. More recently, the NoLambda [18] Architecture was designed combining

streaming, machine learning and batch analytics in a simpler way.

Finally, operating a big data analytics platform usually involves dealing with a lot of

computing resources; therefore, using some kind of resource manager greatly improves

the performance. Historically, the Yarn [19] resource manager has been employed for

Hadoop workloads. Nevertheless, new resource managers, such as Mesos [20], have

been employed in production by many companies (e.g. Twitter, Apple, Netflix, Paypal),

as they are capable of dealing with Hadoop and other kinds of workload. The maturity

of Mesos has led to the concept of Data Centre Operating System [21].

2.2 ANALYTICAL TECHNIQUES BACKGROUND

Predictive Analytics [22] is based in a variety of techniques that basically, can be

classified into two groups:

 D2.5 Final Specification of Predictive Analytics Platform

12 November 2018 Version 1.0 Page 11

Confidentiality: EC Distribution

 Regression Techniques - These techniques try to find a mathematical

relationship between the input variables and the output variables. Main

techniques in this group include, among others:

o Linear Regression.

o Logistic Regression.

o Multinomial Logistic Regression.

o Time Series Models.

o Decision Trees / Random Forest Trees.

o Multivariate Adaptive Regression Splines.

 Machine Learning Techniques – These techniques, developed in the artificial

intelligence community, include, among others:

o Deep Learning algorithms / Neural Networks.

o Support Vector Machines (SVM).

o Naive Bayes (Bayesian Algorithms).

o Clustering Algorithms.

In the following sections, each of these techniques will be described very briefly so that

the reader can have a minimal background and a link to a resource with more

information.

However, an in-depth description of each technique is out of the scope of this

document, as it is not intended to be a state-of-the-art presentation of regression and

machine learning techniques which, by themselves, are huge scientific research areas.

2.2.1 Regression Techniques

The wide variety of regression techniques available is the consequence of none of them

offering optimal results for all problems. In fact, for a given type of problem,

furthermore, a given instance of a problem, some techniques give better results than

others. Often, it is necessary a data scientist to study the problem, select and apply the

most appropriate technique. Main regression techniques include, among others, the

following:

 Linear Regression – In this technique the relationship between input variables

and output variables is expressed as a linear equation. The goal of the algorithm

is to find the parameters of the equation that minimize a loss function that

measures the difference between the values by the equation and the actual

values. Loss function is typically the sum of squared residuals.

D2.5 Final Specification of Predictive Analytics Platform

Page 12 Version 1.0 12 November 2018

Confidentiality: EC Distribution

Though in some cases linear regression fits very well, relationship between

variables is often non linear. And, what is more important, in vast amounts of

input and output data it is difficult to judge “a priori” if a multiple dimensional

linear regression fits the “shape” of the data. In addition to this, noise in the data

can also damage linear regression.

 Logistic Regression [24] – Known also as Logit Regressions, or Logit Model, is

a special case of regression in which the output variable is a “categorical

variable” with a discrete set of values, being the most typical example a binary

variable with only two values 0 or 1 (although it can be applied to multiple

categories). In the case of binary categories, for each set of input variable values,

the logistic regression tries to assign a probability to classify them as belonging

to category 0 or category 1.

The logistic regression uses the mechanism developed in linear regression by

modelling the probability with a logistic function [24] applied to a linear

equation of the input variables. The goal of the algorithms is to find the optimal

parameters of the equation so that a given loss function is minimized. There are

a variety of loss function types that will not be explained here, such as mean

squared error, mean squared logarithmic error, cross-entropy error (frequently

used for binary classification), etc...

Logistic regression is very useful to model the influence of a set of independent

variables in a categorical output variable (classification problem). However,

success depends on selecting the right set of input variables (those who have

influence) and ensuring the data collected from these variables are actually

independent. In addition to this, unbalanced sets of input examples may lead to

apparently good “predictive accuracy” even when the algorithm is not predicting

anything. For example, if 95% of samples belong to category 1 and the

algorithm classifies, blindly, all samples as 1, the accuracy would be 95%.

Obviously, there are techniques to correct this problem but a skilled data

scientist is needed.

 Multinomial Logistic Regression [25] – is basically a generalization of Logistic

Regression to multiple categories.

 Time Series models – These models are used for predicting future values of

variables in which a previous set of values and the temporal order in which they

happened, are relevant. In this case, previously mentioned regression techniques

cannot be applied. These techniques include mainly autoregressive models and

moving-average models.

 Decision Trees [26] – are tree like DAG graphs (Directed Acyclic Graph) in

which nodes represent decisions or chances. Traversing the graph helps taking a

decision given an input set of input variables.

This kind of tree is simple to understand, may be defined with little data at the

beginning and extended with more data later, allowing even the representation

 D2.5 Final Specification of Predictive Analytics Platform

12 November 2018 Version 1.0 Page 13

Confidentiality: EC Distribution

of new scenarios. However, defining a decision tree is complex and time

consuming, often requires expert knowledge in the domain, and trees usually

grow very large and therefore become difficult to understand/visualize,

especially when working with big data.

 Multivariate Adaptive Regression Splines (MARS) [27] – It is a non-parametric

simple and easy to understand regression technique with the ability to

automatically model non-linearity. It is a kind of an extension of linear models

but able to handle both categorical and continuous variables.

MARS is a powerful technique that can be applied to large data sets and can

compete and, in some cases, outperform Neural Networks [28]. This technique

has the added benefit of not being a black box, and therefore, allowing engineers

to understand and visualize discovered relationships better than NN.

2.2.2 Machine Learning Techniques

In many situations relationships between input variables can be very complex and no

mathematical approaches such as regression are appropriate. In these cases, machine

learning algorithms can emulate human reasoning and can learn, once they are given a

set of training samples (input and corresponding outputs samples), how the variables are

related.

Main machine learning techniques [23] include, among others, the following listed in

the subsections below.

 Deep Learning Algorithms / Neural Networks [29] – Deep Learning algorithms,

(basically deep neural networks) consist of a set of algorithms that are capable of

training a structure of layers of nodes (neurons) with connections among

neurons from previous and next layers. A single neuron consists of a processing

element which has a number of inputs, each with an associated weight, a transfer

function which determines the output given the weighted sum of the inputs, and

the output itself. During the training process the network is fed with a set of

samples (inputs and outputs) and the network learns to produce the right output

for a given input by updating the weights. Nowadays, neural networks can be

trained with huge amounts of data (hence they are very suitable for big data)

and, once trained, can respond very quickly to new samples.

In contrast to linear or polynomial regression no assumption is needed about the

underlying relationship between input/output variables as the network can

discover complex non-linear relationships by itself. It is also not necessary to

identify with precision the relevant input variables as the network will learn to

ignore non-relevant inputs. Neural networks are particularly robust to noise in

the data.

In addition to this, Recurrent Neural Networks as LSTM (Long-Short-Term-

Memory) and Convolutional LSTM are special architectures to deal with Time

Series data and are very appropriate for prediction and forecasting problems

D2.5 Final Specification of Predictive Analytics Platform

Page 14 Version 1.0 12 November 2018

Confidentiality: EC Distribution

where temporal order is important and where causal relation with events

happened in the past is relevant to identify current events.

Neural Networks have also been applied to image recognition, speech

recognition and text translation problems. In recent years, neural networks have

witnessed a very notorious success in these fields.

 Support Vector Machines (SVM) – It is a supervised learning algorithm that

constructs a set of multidimensional hyperplanes (there is a linear and non-linear

version) typically used for classification and regression. They are used for text

and hypertext classification, image classification, character recognition and also

widely used in biological sciences for example to classify proteins.

 Naive Bayes (Bayesian Algorithms) – Naive Bayes classifiers, are a family of

simple probabilistic classifiers based on the application of the Bayes Theorem

with the assumption of independence between every pair of features. They have

been shown to be very useful for text categorization, this is, categorizing the

topic of a given document (for example, sports, politics or spam) using the

frequencies of words, and even in medical diagnosis based on symptoms,

physical examination and medical record of a patient. They may compete with

SVM algorithms.

 Clustering Algorithms - These algorithms, such as k-nearest neighbours

algorithm (k-NN), are used for classification and regression. Given a set of

samples, the algorithm tries to classify the samples in groups by finding “centre

points” in each group so that the distance of the members of a given group to its

centre is minimized. Then, to classify a new sample, the distances of the new

sample to the centres of the groups are computed, assigning the new sample to

the closest group.

2.3 MACHINE LEARNING ALGORITHMS IN APACHE SPARK

As Apache Spark is the core of SAFIRE framework, this section specifies which are the

core concepts used in SAFIRE and the main machine learning algorithms (called

estimators in Spark).

2.3.1 Core Concepts

Spark is an open-source framework oriented to real-time big data ingestion and

processing. The key concepts here are real-time and machine learning. The main

features of Spark are:

 It is specially designed to tackle real-time data ingestion and processing.

 It is designed to take advantage of parallelization as data processing can be

executed in multiple computing clusters in parallel.

 D2.5 Final Specification of Predictive Analytics Platform

12 November 2018 Version 1.0 Page 15

Confidentiality: EC Distribution

 It uses an in-memory data processing architecture which results in much faster

accessing and processing of the data (this is one of the key reasons for its

adoption in SAFIRE, devoted to real-time).

 Is especially suited to support machine learning algorithms due to the fact that

iterative or cyclic processes take advantage of the in-memory architecture

benefitting of a much faster load and query data in the memory of a cluster. This

is one of its main differences with Hadoop that is not memory-oriented, resulting

in a much slower support, in fact inappropriate, for machine learning algorithms.

 There are three data abstraction types, unstructured data RDD (Resilient

Distributed Datasets), more structured DataFrame and DataSets. These types

represent and evolution from Spark 1.0 to Spark 2.0 and later: RDD is the oldest,

Data Frames are more user-friendly and more efficient, and finally Datasets

increase the ease of use and efficiency. (RDDs will be deprecated in the future

for direct usage of developers).

 Data (Data Frames and Datasets included) is internally always organized as

RDDs and can be distributed in different clusters. There are two types of

operations on RDDS:

o Transformations – Define how to create an RDD or how to transform

one RDD out of other RDDs. Transformations, which can be chained

in pipelines of subsequent operations, return new RDDs.

o Actions – Ask for processing and returns a result (not an RDD) to the

driver program (i.e collect, count, take, etc).

 Provides an API in Python, Java, Scala and R, and allows the definition of in-

line functions with lambda architecture.

 A program in Spark is organised as a Driver Program that defines a graph of

operations to be applied to RDDs, Data Frames and Datasets. These operations

are executed by a set of Worker Nodes in clusters. Spark applies a lazy

evaluation to the graph of operations so that execution is really performed when

the whole graph is defined and the execution is finally asked. Before execution

Spark may optimize the graph resulting into a simpler and faster graph. This

process is depicted in figure below.

D2.5 Final Specification of Predictive Analytics Platform

Page 16 Version 1.0 12 November 2018

Confidentiality: EC Distribution

Figure 2-1: Sparks Driver Program-Worker Node architecture in cluster mode (figure taken from Apache
Spark’s web page)

Key components of Spark can be summarised as follows:

 Spark Core and Resilient Distributed Datasets (RDD), Data Frames and

Datasets. These components provide:

o Input/output operations (i.e. import data from external files).

o Distributed task dispatching and scheduling.

o Data transformations (reduce, join, filter, normalize, tokenize, map,

etc).

o Etc.

 Spark SQL. Supports semi-structured and structured data and supports SQL

with ODBC/JDBC servers.

 Spark Streaming. Leverages the fast scheduling of Spark Core, allowing very

quickly ingesting small data batches (needed for streaming), and applying

transformations to these data batches in real-time.

 Machine Learning Library (MLib).

o It is a set of state-of-art machine learning algorithms.

o Following Spark’s philosophy, these algorithms can also be executed

in a distributed environment (clusters) taking advantage of

parallelization.

o For a given problem, it is very easy to switch out the learning

algorithm, so it is very easy to explore and play with different

algorithms to discover which one works better for the problem to

solve. This is a very important feature of Spark.

 D2.5 Final Specification of Predictive Analytics Platform

12 November 2018 Version 1.0 Page 17

Confidentiality: EC Distribution

 GraphX. It is a distributed graph processing framework. Provides an API for the

computation of large-scale graphs of operations (transformators, estimators, etc)

in an optimized way.

Sparks offers a library of Machine Learning algorithms with the goal of being real-time,

scalable and easy to use (also key reasons for Spark adoption in SAFIRE). In the

following subsections, main features and algorithms of Spark’s library are explained.

2.3.2 MLib - Conceptual main classes

Conceptually there are four main abstract classes in the Spark MLib API (see

https://www.youtube.com/watch?v=6tgvHDYT_AM for an excellent introduction to

Spark’s MLib) :

 Transformers (data -> transformed data)

o Are used to pre-process data before applying a machine learning

algorithm to the data.

o Transform Data Frames into other Data Frames. A typical example of

transformation is to Normalize the data (i.e. achieve 0.0 mean, and 1.0

standard deviation).

o Example: Transformer.transform(data: DataFrame)-> data:

DataFrame.

 Estimators (data -> model)

o Train Data Frames and create a model. These are the machine

learning algorithms and will be explained in some detail later in this

document. There are estimators of the following main types.

 Classifiers (Logistic Regressions, Decision Trees, Multi Layer

Perceptrons, Random Forest, bayes, etc).

 Regressors (Linear, Decision Trees, Random Forest, etc).

 Clusterers (K-means, Latent Dirichlet Allocation, Gaussian

Mixture).

o Example: Estimator.fit(data: DataFrame)-> trainedModel: Model

 Model (data -> predicted data)

o Represents a trained engine that can be used to make predictions

according to the training.

https://www.youtube.com/watch?v=6tgvHDYT_AM

D2.5 Final Specification of Predictive Analytics Platform

Page 18 Version 1.0 12 November 2018

Confidentiality: EC Distribution

o It is, in fact, a kind of transformer, as it transform a Data Frame in

another Data Frame with an additional column with the predictions.

o Example: Model.transform(testData: DataFrame)-> predictions:

DataFrame

 Pipelines (data -> data -> data -> -> data-> model)

o Allow chaining an arbitrary number of transformations followed by

one estimator.

o The pipeline itself is an Estimator, while the resulting model obtained

by calling the fit() function is a transformed,

o Example: Pipeline.fit(data: DataFrame)-> trainedModel:

PipelineModel

Figure 2-2, borrowed from Apache Spark’s MLlib main Guide in Spark’s web

page, explains these key concepts.

Figure 2-2: Pipeline is an Estimator that produces a Model (figure composed by images
from Apache Spark’s web page).

In Figure 2-2, the upper row shows the definition of an estimator by chaining

two transformators (Tokenizer, HashingTF) and an estimator

(LogisticRegression). By calling the fit() function, the pipeline (middle row)

produces a model (Logistic Regression Model) that is a transformator that can

produce predictions (lower row).

In summary, by using these elements (Transformators, Estimators, Models, Pipelines),

the Driver Program defines a data processing that will be assigned to Worker Nodes in

clusters and executed upon asking.

 D2.5 Final Specification of Predictive Analytics Platform

12 November 2018 Version 1.0 Page 19

Confidentiality: EC Distribution

2.3.3 Algorithms in Spark’s Machine Learning Library (MLlib)

This section gives an overview of machine learning capabilities of Spark (a short

explanation will be given for some of the most interesting). Most of these algorithms

have been introduced in Section 2.2.

Before getting into the description of the algorithms, it is worth introducing the list of

functions to extract, transform and select the features that will be processed by the

machine learning algorithms.

2.3.3.1 Extracting, Transforming and Selecting features

These functions help prepare the data for being processed with an estimator (a machine

learning algorithm). The list of feature processing functions is huge, and it is out of the

scope of this document to explain each one, as this document only wants to give an idea

of the power of Spark’s machine learning algorithms. See

http://spark.apache.org/docs/latest/ml-features.html for a complete explanation of each

function.

 Feature Extractors

o TF-IDF – feature vectorization method widely used in text mining to

reflect the importance of a term in a document.

o WordToVec – maps words of documents to fixed-size vectors.

o CountVectorizer – convert a collection of text documents to vectors

of token counts.

o FeatureHasher – projects a set of categorical or numerical features

into a feature vector of a specified dimension.

 Feature Transformation

o Tokenizer – converts text into individual words.

o StopWordsRemover – excludes some words from a given text.

o n-gram – converts a sequence of tokens (i.e. string) in sequences of n

tokens (n-grams).

o Binarizer – converts numerical values to 0 or 1 according to a

threshold value.

o PCA – performs an orthogonal transformation to convert a set of

observations of possibly correlated variables into a set of values of

linearly uncorrelated variables (principal components).

o PolynomialExpansion – expands a set of features into a polynomial

space (that is a n-degree combination of the input features).

http://spark.apache.org/docs/latest/ml-features.html

D2.5 Final Specification of Predictive Analytics Platform

Page 20 Version 1.0 12 November 2018

Confidentiality: EC Distribution

o Discrete Cosine Transform (DCT) – applies a discrete fourier

transform but only with real numbers.

o StringIndexer – encode list of string into numbers (assigned numbers

are ordered by frequency).

o IndexToString – the opposite to StringIndexer.

o OneHotEncoderEstimator – encode a set of categorical features into a

binary vector in which each 0/1 of the vector represents the presence

of the corresponding feature.

o Interaction – Given two vector of double values, it computes the

product of all combinations of values of both vectors.

o Normalizer, StandardScaler, MinMaxScaler, MaxAbsScaler – Given

a vector of real values, these transformers help normalize and rescale

their values. For example StandardScaler normalizes the value so that

they have, for example, 0.0 mean and 1.0 standard deviation.

o Bucketizer – transforms a column of continuous values into buckets,

where each buckets consists of a part of the range of the domain of

the variables.

o ElementwiseProduct – computes element-wise product of two

columns of real values.

o SQLTransformer – applies a SQL like transformation to a set of data

frames.

o VectorAssembler – combines a list of columns to produce a single

vector column that contains lists with the original values.

o VectorSizeHint – explicitly specifies the vector size of a column

before it is completed (useful for example in streaming where the size

is not known in advance)

o QuantileDiscretizer – bucketizes the input in n buckets, deciding the

buckets on its own.

o Imputer – completes missing values in a dataset by computing the

missing values as means or medians of the column or neighbours

values.

 Feature Selectors

o VectorSlicer – selects a sub-vector of the input sector.

o RFormula – selects columns specified by a R model formula.

 D2.5 Final Specification of Predictive Analytics Platform

12 November 2018 Version 1.0 Page 21

Confidentiality: EC Distribution

o ChiSqSelector – applies a chi-squared test of independence to decide

the features to select.

 Locally Sensitive Hashing (LHS) – Hash data points into buckets (according to

a family of LHS functions). Used in clustering.

2.3.3.2 Machine Learning algorithms (Estimators)

All of the algorithms described in this section try to predict the value(s) of a set of

dependant variables (one or more), out from the values of a set of independent

variables (usually more than the dependant variables). Two phases can be

distinguished:

 Training. In this phase, the algorithm learns (by an iterative process) out from a

set of labelled samples (a labelled sample is a set of values of the independent

variables for which the value of the dependant variable is known, it is,

“labelled”). At the end of this phase the training process produces a model.

 Prediction. In this phase the model is used to predict the dependant variable

value for a given sample for which the label is unknown.

The algorithms described below use different techniques to produce the model.

Classification

 Logistic regression (Binomial and Multinomial). The algorithm calculates

(regresses) the coefficients involved in a linear combination of the values of the

independent variables that are fed to a logistic function to predict the category of

the dependant variable (two possible categories in a binary problem, and three

or more in multi category problems). See

https://en.wikipedia.org/wiki/Logistic_regression) for a comprehensive

description of the algorithm. This is one of the most important methods in

machine learning.

 Decision tree classifier. These algorithms learn a decision tree in which each

node represents a decision to be taken out from the value of a dependant

variable. The leaves of the tree represent classifications categories of the sample.

See https://en.wikipedia.org/wiki/Decision_tree_learning for a comprehensive

description of the algorithm. Decision Trees tend to overfit to the training set.

In this context, a set of algorithms know as Tree Ensembles, use multiple

decision trees to improve the accuracy of just one single decision tree. Tree

Ensembles implemented in Spark are Random Forest and Gradient Boost and

are known to reduce overfitting of one single tree approach.

https://en.wikipedia.org/wiki/Logistic_regression
https://en.wikipedia.org/wiki/Decision_tree_learning

D2.5 Final Specification of Predictive Analytics Platform

Page 22 Version 1.0 12 November 2018

Confidentiality: EC Distribution

 Random Forest classifier. Are ensembles of multiple decision trees with the

aim of reducing the overfitting. See

https://en.wikipedia.org/wiki/Random_forest for a comprehensive description of

the algorithm.

 Gradient-Boosted Tree classifier Are ensembles of multiple decision trees

(usually of fixed size) that are iteratively improved by a gradient descendant

algorithm optimizing a loss function. See

https://en.wikipedia.org/wiki/Gradient_boosting for a comprehensive

description of the algorithm.

 Multilayer Perceptron classifier. It is a multilayer fully connected (all neurons

in a layer are connected to all neurons in the next layer) neural network in which

activation function of intermediate layers are sigmoid functions (logistic

function) and activation of output layer is, either a sigmoid function (for two

categories) or a softmax function (for multiple categories). See

https://en.wikipedia.org/wiki/Feedforward_neural_network for a comprehensive

description of the algorithm.

 Linear Support Vector Machine – constructs a set of hyperplanes in a n-

dimensional space to classify a set of training samples. See

https://en.wikipedia.org/wiki/Support_vector_machine for a comprehensive

description of the algorithm.

 One-vs-Rest classifier – this technique (that is used to classify samples in

multiple classes or categories) consists of training one single classifier for each

category (labelling each sample as 1 if it belongs to the category and 0

otherwise). Once all classifiers have been trained (one per category) then, given

a new sample, all classifiers are applied and the sample is assigned to the

category of the classifier that returned a higher confidence. See

https://en.wikipedia.org/wiki/Multiclass_classification#One-vs.-rest for a

comprehensive description of the algorithm.

 Naive Bayes – it is a family of simple probabilistic classifiers that applies

Bayes’ theorems with strong (naive) independence assumptions between the

features. See https://en.wikipedia.org/wiki/Naive_Bayes_classifier for a

comprehensive description of the algorithm.

Regression

 Linear regression – applies the linear regression described in the previous

algorithm of logistic regression.

 Generalized linear regression – these are linear models where the output may

follow other probabilistic distribution different from Gaussian (the assumption

under linear regression). These distribution functions may be one of the

https://en.wikipedia.org/wiki/Random_forest
https://en.wikipedia.org/wiki/Gradient_boosting
https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Multiclass_classification#One-vs.-rest
https://en.wikipedia.org/wiki/Naive_Bayes_classifier

 D2.5 Final Specification of Predictive Analytics Platform

12 November 2018 Version 1.0 Page 23

Confidentiality: EC Distribution

following: Binomial, Poisson, Gamma, Tweedie and, of course, Gaussian. See

https://en.wikipedia.org/wiki/Generalized_linear_model for a comprehensive

description of the algorithm.

 Decision tree regression - applies a decision tree based regression described in

the previous algorithm of decision trees classifiers.

 Random forest regression - applies a random forest regression technique

described in the previous algorithm of random forest classifiers.

 Gradient-boosted tree regression - applies a gradient boosted tree regression

technique described in the previous algorithm of gradient boosted tree

classifiers.

 Survival regression – See http://spark.apache.org/docs/latest/ml-classification-

regression.html#survival-regression for a description of the algorithm

implemented by Spark.

 Isotonic regression – See http://spark.apache.org/docs/latest/ml-classification-

regression.html#isotonic-regression for a description of the algorithm

implemented by Spark.

2.3.4 Hyperparameter tuning

The training process of the algorithms described above need to be parameterized before

starting the training. Although each algorithm defaults an initial setting of these

parameters (with typical initial default values), results of trained model strongly

depends of these parameters. Therefore a big data scientist will need to experiment with

different parameter settings.

As an example of these parameters (known as hyperparameters of the algorithm), below

it is shown the default hyperparameters’ values of a Random Forest Regression (printed

with pyspark).

Define a random forest regressor
rf = RandomForestRegressor(....)

Hyperparameters and their default values
{'cacheNodeIds': False,
 'checkpointInterval': 10,
 'featureSubsetStrategy': 'auto',
 'featuresCol': 'prediction',
 'impurity': 'variance',
 'labelCol': 'label',
 'maxBins': 32,
 'maxDepth': 5,
 'maxMemoryInMB': 256,
 'minInfoGain': 0.0,

https://en.wikipedia.org/wiki/Generalized_linear_model
http://spark.apache.org/docs/latest/ml-classification-regression.html#survival-regression
http://spark.apache.org/docs/latest/ml-classification-regression.html#survival-regression
http://spark.apache.org/docs/latest/ml-classification-regression.html#isotonic-regression
http://spark.apache.org/docs/latest/ml-classification-regression.html#isotonic-regression

D2.5 Final Specification of Predictive Analytics Platform

Page 24 Version 1.0 12 November 2018

Confidentiality: EC Distribution

 'minInstancesPerNode': 1,
 'numTrees': 20,
 'predictionCol': 'prediction',
 'seed': -814876731608538448,
 'subsamplingRate': 1.0}

However, for example, maximum depth of the trees and the number of trees can have

huge impact on the result. Obviously it is possible to run manually the experiments

multiple times with different settings, selecting finally the best model found.

Fortunately Spark’s MLib offers an “automatic” research of the best settings. Let’s see

how.

With Spark MLib it is possible to define a grid of possible settings and let Spark run

automatically repeatedly with the different settings. In the code below (python with

pyspark), a grid of settings is defined. In this case maxDepth param will range in the

values 5,6,7,8,9,10, while numTrees parameter will range in the values

10,11,12,13,14,15,16,17,18,19,20. Therefore a total number of 6x11 = 66 training

experiments will be made, finally selecting the best model.

Define a Param Grid
paramGrid = ParamGridBuilder() \
 .addGrid(rf.maxDepth, [5, 10]) \
 .addGrid(rf.numTrees, [10, 20]) \
 .build()

Once defined, the grid of settings a TrainValidationSplit estimator is built:

Run automatically a validation over the training set and the grid
of params
trainValidationSplit = TrainValidationSplit(
 estimator=pipeline,
 estimatorParamMaps=paramGrid,
 evaluator=r2_evaluator)

And finally the fit function is called, with a final selection of the best model.

Fit and select the best model
model = trainValidationSplit.fit(training).bestModel

Obviously, in this case, the fit process will take much more time than a single

experiment, but this function allows exploring automatically with arbitrarily complex

grids of parameters.

A very interesting possibility is to explore the possible combinations of

hyperparameters setting in parallel, taking advantage of the parallel clusters of Spark.

More on this is explained in next section.

 D2.5 Final Specification of Predictive Analytics Platform

12 November 2018 Version 1.0 Page 25

Confidentiality: EC Distribution

2.3.5 Spark, TensorFlow, Keras and Deeplearning4j

In addition to Spark’s MLlib, there well known open-source machine learning and deep

learning frameworks, as for example:

 TensorFlow (https://www.tensorflow.org) machine learning framework

originally originally by Google.

 Torch and Pytorch (https://pytorch.org/) open-sourced by Facebook in 2017.

 Caffe (http://caffe.berkeleyvision.org/) machine vision library for C/C++.

 Keras (https://keras.io/), high level API to use TensorFlow in Python.

 Eclipse Deeplearning4j, deep learning platform for Java, well integrated

with Kafka, Hadoop and Spark and capable of importing Keras trained

models.

 Etc.

In general terms, Apache Spark (while providing the state-of-art machine learning

library MLlib) is more oriented to real-time data processing and cluster computing, so

allowing users to process big-data in multiple cluster, ensuring fault tolerance, etc. On

the other hand, TensorFlow (and its API Keras), Deeplearning4J, etc, are very much

oriented to define sophisticated and more complex machine learning algorithms.

In SAFIRE context, the emphasis is on Big Data, Real-Time ingestion and processing,

so Spark (that in addition offers a quite good machine learning library MLib) is the

natural answer. However for very complex learning tasks, a dedicated machine learning

framework may be more appropriate.

Spark can be used in combination with TensorFlow, Keras, Deeplearning4j, resulting in

a Big Data and Real-Time data processing with a variety of machine learning

algorithms, MLib, TensorFlow, Keras, Deeplearning4j available depending the

complexity of the learning task. In fact, machine learning frameworks needs big

amounts of data for training, exactly what Sparks offers.

The following points show two cases using Spark and a cluster of machines to improve

deep learning with tensor flow. These examples are taken from

https://databricks.com/blog/2016/01/25/deep-learning-with-apache-spark-and-

tensorflow.html in which a detailed explanation is given.

 Deploying large-scale models.

TensorFlow models can be embedded in pipelines to perform complex

classification tasks. The model is distributed into multiple workers in

multiple clusters by using the built-in broadcast mechanism of Spark. This

architecture brings the possibility of applying deeplearning complex models

to big data.

https://www.tensorflow.org/
https://pytorch.org/
http://caffe.berkeleyvision.org/
https://keras.io/
https://databricks.com/blog/2016/01/25/deep-learning-with-apache-spark-and-tensorflow.html
https://databricks.com/blog/2016/01/25/deep-learning-with-apache-spark-and-tensorflow.html

D2.5 Final Specification of Predictive Analytics Platform

Page 26 Version 1.0 12 November 2018

Confidentiality: EC Distribution

 Hyperparameters tuning in parallel.

In this case Spark’s parallelization is used to find the best set of

hyperparameters values for a neural network training.

The TensorFlow library is installed in Spark’s clusters as a regular python

library and each cluster executes one training at a time for a given

combination of hyperparameters. In this case, parallel searching, drastically

reduces the time to discover the best model.

2.4 OTHER PREDICTIVE ANALYTICS SOFTWARE

There is a wide variety of Predictive Analytics Software packages available [30][31].

These packages can be classified into two groups: open-source software (basically free

licence) and commercial software (pay licences).

Apart from licensing policy and fees, the main difference between them lies in the skills

needed to use and customize them, and the amount of data they can handle efficiently.

Generally speaking, open-source software requires more expertise to customize, train

and handle the tools, while commercial software has more user friendly interfaces that

make easier the task of modelling, visualizing, managing and training.

In addition to this, there is specifically a list of deep learning implementations that can

be found in [32] reporting differences among most of the very well known packages

such as Keras/Tensorflow, Caffe, Deeplearning4j, MatLab(c), Microsoft Cognitive

Toolkit(c), Pytorch, Theano, Torch, etc. Some of these packages will be used in

SAFIRE, especially Keras/Tensorflow. However, it is beyond the scope of this

deliverable a detailed review of each software package.

In the following two sections we will give a brief list of the best known available open-

source and commercial predictive analytics software packages.

2.4.1 Open-Source Software

 Apache Mahout (https://mahout.apache.org) – It is a project from the Apache

Software Foundation that provides free implementations (most of them on top of

Apache Hadoop) of machine learning algorithms for filtering, clustering and

classification. Its algorithms are focused in Distributed Linear Algebra,

Regression and Clustering. Mahout provides a Java API so that an end user can

program its own application, therefore, it requires a deep knowledge of the API

and it is better suited for an IT expert.

 GNU Octave (https://www.gnu.org/software/octave) – This tool and its

Scientific Programming Language is a powerful mathematics oriented software

with visualization tools, linear and non-linear solving packages, and many other

https://mahout.apache.org/
https://www.gnu.org/software/octave

 D2.5 Final Specification of Predictive Analytics Platform

12 November 2018 Version 1.0 Page 27

Confidentiality: EC Distribution

numerical packages, as for example statistics and machine learning toolbox. It is

compatible (and one of the best free alternatives) with the very well-known

MATLAB(c).

 KNIME (https://www.knime.com/) – It is specifically devoted to data analytics,

reporting with a graphical interface that allows using the tool with minimal

programming effort. KNIMES, written in Java and based on Eclipse, is used in a

variety of areas like Customer Intelligence Analysis, Social Media Analysis,

Finance Analysis, Manufacturing, Pharma and Health Care, Retails, etc. It

allows processing large data sets, includes modules to connect with Big Data on

Hadoop, supports major file formats (XML, JSON, images...), allows connecting

to several databases, includes advanced predictive and machine learning

algorithms, and integrates with machine learning libraries such as Keras, and

Scikit-Learn. In addition to all this, it allows interactive design of dynamic

workflows, interactive data-views and web-based reporting.

 Orange (https://orange.biolab.si/) – It is an open-source data visualization,

machine learning and data mining toolkit. Similarly to KNIMES, it provides a

visual interface to define data analysis tasks. It includes, among other features,

data filtering, sampling, complex visualization, supervised learning algorithms

for classification and regression, and special packages. For instance, these

packages provide analysis tools for bioinformatics, networks, text mining, time

series, etc.

 R (https://www.r-project.org) – It is a very well known GNU Package consisting

of a programming language and a software environment for statistics supported

by the “R Foundation for Statistical Computing”. It is widely used by

statisticians and data miners to develop statistics software and data analysis

software.

 Scikit-learn (http://scikit-learn.org/stable/#) – It is a Python library for machine

learning including Classification Algorithms (SVM, Nearest Neighbour,

Random Forest, etc), Regression Algorithms, Clustering Algorithms,

Dimensionality Reduction, etc.

 Weka (https://www.cs.waikato.ac.nz/~ml/weka/) – It is a collection of

visualization tools, machine learning algorithms and predictive modelling

written in Java and developed by the University of Waikato in New Zealand.

Weka is integrated with Deeplearning4j for deep learning.

According to [33] and classified by categories, the open-source tools with higher score

(Editor’s rating) are Orange Data Mining, R Software, Weka, KNIME and HP Haven

Predictive Analytics.

2.4.2 Commercial Software

The list of available commercial software is huge, as many companies are interested in

the market of data analysis. In [30] a list of the most known open-source and

https://www.knime.com/
https://orange.biolab.si/
https://www.r-project.org/
http://scikit-learn.org/stable/
https://www.cs.waikato.ac.nz/~ml/weka/

D2.5 Final Specification of Predictive Analytics Platform

Page 28 Version 1.0 12 November 2018

Confidentiality: EC Distribution

commercial software solutions can be found. In [33], an overview and a score of the

best Predictive Analytics Tools, classified by categories, can be found. The list below

represents some of the most relevant commercial tools.

 Alpine Data Labs

 Alteryx

 Angoss KnowledgeSTUDIO

 Actuate Corporation BIRT Analytics

 Dataiku DSS

 Google Cloud Prediction API

 IBM Analytics

 IBM SPSS Statistics and IBM SPSS Modeler

 KXEN Inc. Modeler

 Mathematica

 MATLAB

 Minitab

 LabVIEW

 Microsoft Azure Machine Learning

 Neural Designer

 Oracle Advanced Analytics

 Pervasive

 Predix

 Predixion Software

 RapidMiner

 RCASE

 Revolution Analytics

 SAP HANA and SAP Predictive Analytics

 SAS and its Enterprise Miner

 Sidetrade

 Stata

 Statgraphics

 Statistica

 Tibco Software

According to [33] and classified by categories, the commercial tools with higher score

(Editor’s rating) are Microsoft Azure Machine Learning, Dataiku DSS and Google

Cloud Prediction API.

2.4.3 Interoperability of Predictive Analytics Software

Interoperability of Predictive Analytics Software requires a way to interchange models

and data analysis between software packages. The answer to this need is PMML [34], a

standard for statistical and data mining models (supported by over 20 vendors) that

allows (a) developing a model with one software package, (b) exporting the model into

a PMML file, and (c) import the model back into another software package.

PMML is a XML file (with a defined schema) that allows defining, and therefore

interchanging, among others, the following concepts:

 Field Scopes.

 Data Dictionaries.

https://en.wikipedia.org/wiki/Alpine_Data_Labs
https://en.wikipedia.org/wiki/Alteryx
https://en.wikipedia.org/wiki/Angoss
https://en.wikipedia.org/wiki/Actuate_Corporation
https://www.dataiku.com/dss/features/connectivity/
https://cloud.google.com/prediction/?hl=es
https://www.ibm.com/analytics/
https://en.wikipedia.org/wiki/SPSS
https://en.wikipedia.org/wiki/SPSS_Modeler
https://en.wikipedia.org/wiki/KXEN_Inc.
https://en.wikipedia.org/wiki/Mathematica
https://en.wikipedia.org/wiki/MATLAB
https://en.wikipedia.org/wiki/Minitab
http://www.ni.com/en-us/shop/labview.html
https://studio.azureml.net/
https://en.wikipedia.org/wiki/Neural_Designer
https://en.wikipedia.org/wiki/Oracle_Corporation
https://en.wikipedia.org/wiki/Pervasive_Software
https://www.predix.io/
https://en.wikipedia.org/wiki/Predixion_Software
https://en.wikipedia.org/wiki/RapidMiner
https://en.wikipedia.org/wiki/RCASE
https://en.wikipedia.org/wiki/Revolution_Analytics
https://en.wikipedia.org/wiki/SAP_HANA
https://en.wikipedia.org/wiki/SAS_(software)
https://en.wikipedia.org/w/index.php?title=Sidetrade&action=edit&redlink=1
https://en.wikipedia.org/wiki/Stata
https://en.wikipedia.org/wiki/Statgraphics
https://en.wikipedia.org/wiki/Statistica
https://en.wikipedia.org/wiki/Tibco_Software

 D2.5 Final Specification of Predictive Analytics Platform

12 November 2018 Version 1.0 Page 29

Confidentiality: EC Distribution

 Mining Schemas.

 Transformations.

 Statistics.

 Functions.

 Bayesian Networks.

 Naive Bayes Models.

 Cluster Models.

 Regression Models.

 Neural Networks.

 Time Series.

 Vector Machines.

 Etc.

In Spark, and therefore in SAFIRE, some of the machine learning algorithm models can

be exported into PMML. The table below (borrowed from Spark’s MLlib web page):

Spark's MLIB Model PMML Model

KMeansModel ClusteringModel

LinearRegressionModel RegressionModel (functionName="regression")

RidgeRegressionModel RegressionModel (functionName="regression")

LassoModel RegressionModel (functionName="regression")

SVMModel RegressionModel (functionName="classification"
normalizationMethod="none")

Binary LogisticRegressionModel RegressionModel (functionName="classification"
normalizationMethod="logit")

Table 2-1. Spark’s MLlib model supporting exporting into PMML.

Below is an example of source code (borrowed from Spark’s MLIb web page, see

https://spark.apache.org/docs/2.3.0/mllib-pmml-model-export.html) showing how to

export into PMML.

import org.apache.spark.mllib.clustering.KMeans
import org.apache.spark.mllib.linalg.Vectors

// Load and parse the data

data = sc.textFile("data/mllib/kmeans_data.txt")
parsedData = data.map(s => Vectors.dense(s.split(' ').map(_.toDouble))).cache()

// Cluster the data into two classes using KMeans

https://spark.apache.org/docs/2.3.0/mllib-pmml-model-export.html

D2.5 Final Specification of Predictive Analytics Platform

Page 30 Version 1.0 12 November 2018

Confidentiality: EC Distribution

val numClusters = 2
val numIterations = 20
val clusters = KMeans.train(parsedData, numClusters, numIterations)

// Export to PMML to a String in PMML format

println(s"PMML Model:\n ${clusters.toPMML}")

// Export the model to a local file in PMML format

clusters.toPMML("/tmp/kmeans.xml")

// Export the model to a directory on a distributed file system in PMML format

clusters.toPMML(sc, "/tmp/kmeans")

// Export the model to the OutputStream in PMML format

clusters.toPMML(System.out)

2.5 RELATED EU PROJECTS

This section briefly describes some EU projects related to SAFIRE that will be taken

into account:

 PrEstoCloud – EU H2020-ICT-2016-1 (2016-2019). Dynamic and distributed

software architecture that manages cloud and fog resources proactively, while

reaching the extreme edge of the network for an efficient real-time Big Data

processing.

 MIKELANGELO - EU H2020-ICT-2014-1 (2014-2017). Resource management

layer for heterogeneous, cloud-based infrastructures, including methodologies,

tools, implementations.

 REPARA - EU-FP7 (2013-2016). Software engineering methodology,

development tools, computer hardware design and analysis, all working hand-in-

hand with industrial end-users to achieve a unified programming model for

heterogeneous computers developing also the required automated software

support tools.

 DREAMCLOUD - EU-FP7 (2013-2016). Application performance analysis and

tailoring for heterogeneous (embedded and HPC) infrastructures.

 C2-Net Cloud Collaborative Manufacturing Networks– EU-FP7 (2015-2018).

The goal of C2NET Project is the creation of cloud-enabled tools for supporting

the SMEs supply network optimization of manufacturing and logistics assets

based on collaborative demand, production and delivery plans. C2NET Project

will provide a scalable real-time architecture, platform and software to allow the

supply network partners:

 To create cloud-enabled tools.

 To support the SMEs supply network optimization of manufacturing and

logistics assets based on collaborative demand, production and delivery

plans.

 D2.5 Final Specification of Predictive Analytics Platform

12 November 2018 Version 1.0 Page 31

Confidentiality: EC Distribution

 CREMA – Cloud Based Rapid Elastic Manufacturing - EU H2020 (2015-

2018). CREMA aims at simplifying the establishment, management, adaptation,

and monitoring of dynamic, cross-organisational manufacturing processes

following cloud manufacturing principles. CREMA will develop the means to

model, configure, execute, and monitor manufacturing processes, providing end-

to-end support for cloud manufacturing by implementing real systems and testing

and demonstrating them in real manufacturing environments.

 VF-OS – Virtual Factories Operating System – H2020 EU. Vf-OS offers a

manufacturing oriented cloud platform, supporting a multi-sided market

ecosystem that provides a range of services for the connected factory of the

future, allowing manufacturing companies to develop and integrate better

manufacturing and logistics processes. VF-OS will enable the Manufacturing

Operating system by providing the following functionalities:

 Virtual Factory System Kernel.

 Virtual Factory Device Drivers and Open APIs.

 Virtual Factory Middleware and Databus.

 Open Application Development Kit.

 Cloud Manufacturing Framework.

 Virtual Factory Components.

3. INNOVATION

As stated in SAFIRE Technical Annex Section 1.4.2, the main originality lies in solving

the crucial problem of how to support process/product optimisation in manufacturing

industry by combining:

 production situation modelling and monitoring, situation analysis and

determination.

 predictive analytics.

 dynamic and predictable reconfiguration.

 to achieve integrative solutions for:

 self-adaptive process/product reconfiguration.

 supporting feedback loops from products use to both process/product

design and production control.

In order to achieve this goal, and specifically regarding Predictive Analytics Platform,

this project provides the following innovations:

D2.5 Final Specification of Predictive Analytics Platform

Page 32 Version 1.0 12 November 2018

Confidentiality: EC Distribution

 A dataflow execution architecture to handle the data extraction, transformation

and loading to the framework, differing from the traditional computational

architecture of data. A cloud agnostic big data platform will be developed using

the latest open source trends. From an architectural point of view the so-called

Lambda architecture will be improved using the same engines and storage tools

for both fast and slow data.

 Predictive Analytics Elasticity. A platform offering elastic, highly scalable, fault

tolerant and high-throughput platform using a distributed, coordinated and

clustered system. Exceptional workloads can run on a more powerful cluster by

taking more computing resources from the public clouds using cheap instances.

When those exceptional workloads have been processed the cluster size will be

shrunk to the minimum size in order to save costs (see D.1.4 SAFIRE Concept,

Section 4.1.3 Expected Innovation). This resource management will be managed

by the platform, isolating the end user from the technical complexities.

 Predictive Analytics Services allows a non-expert in Predictive Analytics to

define real-time data gathering and basic but powerful analysis that, otherwise,

would require the collaboration of a data scientist expert. A variety of smart

predictive models and techniques will be within the reach of manufacturing

industry professionals.

Even if some of the features offered by the project can be already available as technical

solutions, they are not within easy reach of SMEs in an industrial environment. As a

result of SAFIRE developments, a powerful Predictive Analytics Platform will be

available for non-experts to use in an industrial environment and with reasonable costs.

In the sections below, some details about those innovations are included.

3.1 DATAFLOW ARCHITECTURE

The platform capabilities will include aggregation, filtering mapping, reducing, etc.

New Big Data analytics engines provide a unified engine for doing real-time and batch

analytics, and for this project, an implementation on top of those engines that simplifies

the overall big data architecture will be developed. From an architectural point of view

the so-called lambda architecture will be improved using the same engines and storage

tools for both fast and slow data.

3.2 PREDICTIVE ANALYTICS ELASTICITY

Big data platforms usually require big computing clusters with isolated workloads. In

order to improve the computational efficiency of such clusters, dynamic resource

managers will be used in this project apart from the standard in the Hadoop world. Such

resource managers include Nomad, Mesos, Swarm or Kubernetes and all of them try to

improve cluster resource utilization sharing computing resources between different

tasks via isolation. Moreover, the developed platform will try to exploit the elasticity of

the public clouds in order to reduce the costs from its usage (e.g. reduce the cluster size,

use spot instances, etc). This feature could be implemented for example on Mesos using

the maintenance primitives along with performance metrics.

 D2.5 Final Specification of Predictive Analytics Platform

12 November 2018 Version 1.0 Page 33

Confidentiality: EC Distribution

Figure 3-1. Using a Spot based cluster.

Finally, as there is a new research trend in scalable data stores called NewSQL where

strong consistency and relational capabilities are added to highly scalable non-relational

databases, in this project we will research the maturity and explore capabilities of these

new approaches in an industrial environment.

3.3 PREDICTIVE ANALYTICS SERVICE

On the analytical area, we plan to develop new predictive analytics algorithms, which

for example can improve the downtime of machines. We plan to explore weakly

labelled data from Cyber Physical Systems (CPS) and smart products using a Deep

Learning approaches for various tasks such as anomaly detection. Detecting anomalies

from CPS data is usually difficult as the CPS usually stay on “normal behaviour”.

Therefore, algorithms that model the normal behaviour of the CPS will be developed

using recurrent neuronal networks or long/short term memory neurons. Another way to

look at this problem is to use Boosting-based methods that are providing impressive

results for real world problems on Kaggle1.

The predictive analytics service will be easy to use for non-expert industrial users. For

example, end-users will be able to call pre-trained predictive models just passing the

input data and asking for predictions, and the service will invoke the model, pass the

data, and return the predictions to the client.

1 https://www.kaggle.com/

D2.5 Final Specification of Predictive Analytics Platform

Page 34 Version 1.0 12 November 2018

Confidentiality: EC Distribution

4. PREDICTIVE DATA ANALYTICS PLATFORM MODULE SPECIFICATIONS

4.1 SPECIFICATIONS TO HANDLE GENERAL REQUIREMENTS

In this section, General Requirements, named as PA_GR* (Predictive Analytics General

Requirement) and their corresponding General Specifications, named as PA_GS*

(Predictive Analytics General Specification) are defined.

4.1.1 Requirements

As stated in SAFIRE deliverable D1.4 Safire Concept in section 4.1.1, the main general

requirements in Predictive Analytics can be summarised in the following point:

 PA_GR1 - Provide a Real-Time Big Data framework for industrial Data

Processing and Analytics to continually improve the manufacturing processes and

the final product design, production process and operation itself.

As discussed in D1.4 Safire Concept traditional data processing applications are not

well adapted to work with large/huge and complex datasets. Frequently these datasets

also grow in real-time. Therefore, SAFIRE requires an innovative framework for real-

time big data processing and analytics that overcomes these limitations. The workflow

of this framework poses the following requirements:

 PA_GR2 - Ingestion: It is necessary to be able to define the input and output

connectors and how data collection works.

 Connectors: Define new input connectors from different kinds of

production systems, cyber physical systems (CPS) and smart objects (e.g.

intelligent products). Besides, integration with different legacy systems

and availability on distinct platforms has to be considered.

 Data Collection: Data ingestion encompasses structured and unstructured

data sets, taken from static situational data or streaming situational data in

real-time.

 PA_GR3 –The framework should work in a reliable way across different

computer nodes in order to have big data analytics capabilities, for what is termed

a computing cluster. As the task of managing the system can have a great impact

on these types of systems, a cluster kernel in charge of resource management will

be provided. This cluster manager will provide different services such as efficient

resource utilisation, task management or service discovery for the different

analytics tasks that will run on the cluster.

 PA_GR4 - Processing/Analytics: The stream data processing offers data

aggregation, filtering, mapping, reducing, etc. in a near real-time context.

 PA_GR5 – Be able to work with production and product data analytics to get

more accurate predicted data by means of near real-time data processing.

 PA_GR6 - Data can be processed and analysed both offline (offline learning) and

in real-time.

 D2.5 Final Specification of Predictive Analytics Platform

12 November 2018 Version 1.0 Page 35

Confidentiality: EC Distribution

 PA_GR7 - An easily configurable dataflow is needed in order to route the

information flow; therefore, tools providing such support will be integrated on

SAFIRE.

 PA_GR8 - The Big Data platform will be a PaaS, so it can be deployed both on-

premises or on different public cloud providers.

4.1.2 Specifications

In this section, General Specifications (GS*) corresponding to one or more General

Requirements (GR*) are defined.

 PA_GS1 (Satisfies PA_GR1, PA_GR2, PA_GR3) – Safire Software Technology

Architecture specification (defined in SAFIRE deliverable D1.4. SAFIRE

Concept) defines an architecture that is scalable and supports data routing and

transformation via NiFi and streaming apps via Kafka. This architecture can store

data in a distributed way allowing replicated clusters.

 Any data source (from different kind of production systems, cyber

physical systems (CPS) and smart objects, e.g. intelligent products) can be

ingested as long as it has its corresponding connector capable of sending

data to SAFIRE via NiFi with a given format. Data ingestion includes

structured and unstructured data sets, taken from static situational data or

streaming situational data in real-time.

 A cluster kernel in charge of resource management will be provided. This

cluster manager will provide different services such as an efficient

resource utilisation, task management or service discovery for the different

analytics tasks that will run on the cluster. There can be replicated clusters

to guarantee reliability.

 PA_GS4 (Satisfies PA_GR5) – It is possible to aggregate, filter, map, reduce, etc,

the stream data in a near real-time context.

 PA_GS5 (Satisfies PA_GR5) – As long as data from production processes and

the products themselves are uploaded via the corresponding connectors/NiFi and

stored into Cassandra, the Predictive Analytics Platform will be able to work with

them in near real-time.

 PA_GS6 (Satisfies PA_GR6) – Incoming data can be analysed/predicted online in

near real-time as long as a learning algorithm, executed offline, has learnt to

analyse/predict form a collection of past data. Learning algorithms are not real-

time as execution time depends on volume of training data.

 PA_GS8 (Satisfies: PA_GR8) - The Big Data platform will be deployed in a

cluster of virtual machines in which the platform will be hosted. It will consist of

a variable number of virtual machines, with at least two virtual machines, one as

master and another as a computer agent. For better availability, there should be 3

or 5 masters and an odd number of agents due to the need of a strict majority or

quorum (an even number gives no benefit over having the previous odd number).

Minimum virtual machine requirements are:

D2.5 Final Specification of Predictive Analytics Platform

Page 36 Version 1.0 12 November 2018

Confidentiality: EC Distribution

 Masters: 4 cores, 16 GB RAM, 120 GB hard drive (fast disks).

 Agents: 2 cores, 16 GB RAM, 60 GB hard drive.

4.2 SPECIFICATIONS TO HANDLE CROSS-COMPONENTS REQUIREMENTS

In this section, Cross Component Requirements, named as PA_CCR* (Predictive

Analytics Cross Component Requirement) and their corresponding Cross Components

Specifications, named as PA_CCS* (Predictive Analytics Cross Components

Specification) are defined.

4.2.1 Requirements

 PA_CCR1 - Data processing and analysis results must be stored in shared

repository accessible via REST.

 PA_CCR2 - Data to be shared can be published in real-time channels via the

distributed messaging system.

4.2.2 Specifications

 PA_CCS1 (Satisfies PA_CCR1) - Data processing and analysis results will be

stored in Cassandra and data will be accessible via a spring web REST service.

 PA_CCS2 (Satisfies PA_CCR2) – A Publish/Subscribe mechanism will be

offered via Kafka.

4.3 SPECIFICATIONS TO HANDLE INDUSTRIAL BUSINESS CASE REQUIREMENTS

This section describes how and which of the requirements gathered in D1.1 Application

Scenarios Requirements Analysis in (a) Section 5.6 Data Mining and Analytics and (b)

Section 5.10 Performance are covered by these final specifications. In addition to this,

the planned features of the early prototype as defined in D1.4 SAFIRE Concept, Section

5.3.2 Full Prototype Content have been taken into account.

As described in D1.1, three business cases involving three industrial partners will be

used in SAFIRE to demonstrate the applicability of the solution. For each one of the

business-case industrial partners, the following scenarios were chosen:

Electrolux:

 Scenario 1: improve device performance based on feedback

 Scenario 2: improve device performance based on historical data

 Scenario 3: adaptive control of devices

ONA:

 Scenario 1: advanced monitoring and data analytics services for EDM machines

 D2.5 Final Specification of Predictive Analytics Platform

12 November 2018 Version 1.0 Page 37

Confidentiality: EC Distribution

 Scenario 2: smart workshop manager / automated EDM manufacturing line

OAS:

 Scenario 1: real/run-time reconfiguration

 Scenario 2: identification of (specified) events /event causes

 Scenario 3: knowledge generation to design

Analysing those scenarios resulted in the requirements described below.

4.3.1 Requirements

In this subsection, Business Case Requirements specifically related to Predictive

Analytics are analysed. Naming of each requirement (i.e. U78) corresponds to naming

in deliverable D1.1 Application Scenarios Requirements Analysis.

4.3.1.1 Data Mining and Analytics Requirements from Industrial Business Cases

Req.
No.

Requirement Overall Priority

U78 Supports data mining to extract useful
patterns about operator behaviour

SHALL

U79 Supports data mining to extract useful
patterns about machine status

SHALL

U80 Supports data mining to extract useful
patterns about production process
status

SHALL

U81 Provides support for selection of
sensors / systems to be analysed

SHALL

U82 Provides support for selection of
information sources to be analysed

SHALL

U83 Provides support for data/sensor
composition functionality

SHALL

U84 Able to provide historical knowledge
about system deviations or problems

SHOULD

U85 Able to provide decision support for
production line selection

SHOULD

U86 Able to increase visibility of the
production process

SHALL

U87 Supports analysis for algorithm
definition for boiling/temperature
control functionality

SHALL

U88 Supports sensitivity analysis to noise SHALL

U89 Supports main variation factor
identification and robust strategy for
minimising

SHOULD

U90 Supports computational resources
estimation of machines

SHOULD

D2.5 Final Specification of Predictive Analytics Platform

Page 38 Version 1.0 12 November 2018

Confidentiality: EC Distribution

Req.
No.

Requirement Overall Priority

U91 Supports estimation of performance
decrease for algorithm complexity
reduction

SHOULD

U92 Supports process repeatability and
stability characterisation

SHALL

U93 Supports Design of Experiments
(DOE) and Analysis of Variance
(ANOVA) analysis

SHOULD

4.3.1.2 Performance Requirements from Industrial Business Cases

Req.
No.

Requirement Overall Priority

U115 Does not negatively affect the usual
production processes

SHALL

U116 Support for scalability in the size of
cloud and computing resources

SHALL

U117 Support for horizontal scalability to
many machines

SHALL

U118 Capable of real-time data ingestion
(registering data)

SHALL

U119 Capable of batch processing of data
(offline analysis)

SHALL

U120 Capable of real-time data processing SHALL

U121 Capable of providing real-time
reconfigurations / optimisations
(subject to network throughput limits)

SHALL

U122 Able to analyse relevant data within a
given timeframe

SHALL

U123 Capable of storing up to 5
TB/year/machine with resource
recycling facilities

SHALL

U124 Provides support for Machine Learning
(Supervised / Unsupervised / Anomaly
Detection)

SHALL

U125 Able to achieve required precision on
cooking process estimation /
optimisations

SHALL

4.3.1.3 Interface Requirements from Industrial Business Cases

Req.
No.

Requirement Overall Priority

U130 Able to access data stored in a SHALL

 D2.5 Final Specification of Predictive Analytics Platform

12 November 2018 Version 1.0 Page 39

Confidentiality: EC Distribution

Req.
No.

Requirement Overall Priority

relational database

U131 Able to receive and send data from/to
a remote location

SHALL

4.3.2 Specifications

 PA_BCS1 Real-Time Analytics (Satisfies U79, U80, U118) – Basic real-time

analytics such as KPI calculation.

 PA_BCS2 Batch Analytics (Satisfies U84, U80, U124, U115) – Basic offline

analytics, as for example, predictive learning.

 PA_BCS3 Scalable No-Sql Storage (Satisfies U123, U118) – A NoSQL database

based will be implemented in the full prototype.

 PA_BCS4 Data Gathering (Satisfies U130, U131) – Full data input will be

provided for the full prototype operation evaluation.

 PA_BCS5 Support for different IoT Protocols (Satisfies U137) – Connectors will

be able to store data in SAFIRE Platform via NiFi. SAFIRE Predictive Analytics

Platform is not related to IoT protocols. It is responsibility of the corresponding

connector to interface with the device/machine and store data via NiFi.

4.4 SPECIFICATION OF GENERIC FUNCTIONALITIES

A typical Predictive Analytics Process setup or configuration [35] has at least the

following steps:

 Define Project – In this step, the outcome, scope, objectives and involved

datasets are identified.

 Data Collection – Datasets have to be collected, as for example in the case of

SAFIRE, through an online mechanism of production/process data gathering

that is uploaded to the cloud via business case device connectors.

 Data Analysis – In this step, it must be possible to inspect, clean, filter, reduce,

transform, etc the data so it is ready for user visualisation, analysis and

predictive modelling task.

 Statistics – Statistical techniques can be applied to the data to explore relations,

correlations, assumption, etc. so useful information is extracted from the data.

 Predictive Modelling – Provides the functions to create, train and test models

that can learn to correlate/predict a given set of data from past/present sets of

data. Main focus of Predictive Analytics module will be here.

D2.5 Final Specification of Predictive Analytics Platform

Page 40 Version 1.0 12 November 2018

Confidentiality: EC Distribution

 Deployment – Provides the ability to deploy analytical results into everyday

decision making problems. For example, a given application may request to be

notified when a given variable is predicted to have a given value.

A Predictive Analytics Platform has to provide functions to accomplish the most

important steps described above. Next subsections describe the functionalities to be

provided by the Full Prototype.

4.4.1 Data Collection/Storage Functionality Specification

This functionality is common to all modules and should allow collecting and storing

data in the cloud. It will be possible to upload data collected from machines and store

into the cloud via machine connector/NiFi/Kafka/Cassandra.

Figure below shows an example of a schema on how data is uploaded and stored for

ONA business use case. This example will be described step by step.

Figure 4-1 – Example of data flow from ONA machine into Cassandra via NiFi/Kafka.

In this example, ONA machine’s connectors are implemented as a NiFi processor that

can connect ONA machines via ONA Link protocol (via TCP socket). Figure below

shows the NiFi processor SfrOnaLinkRMCDmvarUserRequest (groovy script) that can

be configured to poll variables.

 D2.5 Final Specification of Predictive Analytics Platform

12 November 2018 Version 1.0 Page 41

Confidentiality: EC Distribution

Figure 4-2 – NiFi processor implementing a connector to ONA machines via ONA Link

As the NiFi processor receives values of variables, it builds a JSON file containing the

data and sends the file to the output port. Figure below presents details of a JSON file

produced by the connector in which for each variable the following information is

detailed:

 id: name of the variable.

 value: value read.

 timestamp: time stamp of reception of the value by the connector.

 hostname: IP address from which the variable was read.

 port: port number of the socket.

D2.5 Final Specification of Predictive Analytics Platform

Page 42 Version 1.0 12 November 2018

Confidentiality: EC Distribution

Figure 4-3 – JSON file with data.

Once the data is received via NiFi, (a) another NiFi node publishes the data in a given

Kafka topic, (b) the routing/distribution/scalability mechanism sends the data wherever

is needed and (c) a given consumer can consume the data from Kafka´s corresponding

topic. Figure below shows this flow.

 D2.5 Final Specification of Predictive Analytics Platform

12 November 2018 Version 1.0 Page 43

Confidentiality: EC Distribution

Figure 4-4 - Kafka Manages Data Routing, Distribution and Scalability.

Finally, a sequence of NiFi nodes consume the JSON file from Kafka and store the data

into Cassandra. The following figure describes the steps given.

Figure 4-5 – NiFi sequence of nodes storing data into Cassandra.

 Each JSON file is received in the sequence input port.

 The file is “decoded” to extract the data (IP, port, timestamp, var name, value).

 A Cassandra query is built to put the data into Cassandra.

D2.5 Final Specification of Predictive Analytics Platform

Page 44 Version 1.0 12 November 2018

Confidentiality: EC Distribution

 Finally, a Cassandra Query Put is performed to store the data.

4.4.2 Data Query Functionality Specification

For the full prototype, as it was done in the early prototype, a REST Based data query

functionality will be developed. This REST API will be compatible with the OpenAPI2

specification and clients will be automatically generated by Swagger Codegen3.

The main data query functionality available on the Full Prototype is summarized below:

 Query smart product & smart factory historic production data. E.g. obtain

historic data for the given product.

 Query for Analytics results (real-time / batch). One example of this is the

prediction of the boiling point based on previous data.

Currently, OpenAPI is under design and complete details will be depicted on the Full

prototype specification.

4.4.3 Predictive Modelling Functionality Specification

4.4.3.1 Introduction

In the final prototype online real-time prediction service functionality will be

implemented, following the SAFIRE architecture (Figure 4-6) that specifies a Predictive

Analytics Service developed as Spring REST Web Services. The following subsections

specify the services in detail.

Figure 4-6 - Spring Predictive Analytics REST Web Services.

2 https://www.openapis.org/

3 https://swagger.io/swagger-codegen/

https://www.openapis.org/
https://swagger.io/swagger-codegen/

 D2.5 Final Specification of Predictive Analytics Platform

12 November 2018 Version 1.0 Page 45

Confidentiality: EC Distribution

Prediction Service

The clients will be able to invoke and load previously trained models, not only Spark

models but also Keras/Tensorflow models, as it is shown in Figure 4-7. The use-case of

usage, shows the following:

 A Client requests a service (1) to the Prediction Service consisting on applying a

given predictive model (trained with a given backend, such as spark or keras) to

an input sample of values to get some predicted values.

 The Prediction Service receives the request and (2) invokes the backend to load

the predictive model, (3) gets the predicted values and sends the predicted values

back (4) to the Client.

Figure 4-7 - Spring Web Service REST and Web Service REST Client Workflow.

In the following sections, both the service and the client will be described in detail.

Modelling and Training

As mentioned in previous section, generation of predictions with machine learning

techniques require a trained predictive model. Therefore, two clearly separated

activities are:

 Definition and Training of the predictive model.

 Exploitation of the model to generate Predictions.

Model definition and training is not an obvious task and usually requires expert

knowledge. Spark provides dozens of sophisticated machine learning algorithms,

transformations and multiple ways to define the architecture of a model. Other

packages, such as keras, also offer a wide variety of alternatives to define, train and

fine-tune deep learning algorithms.

D2.5 Final Specification of Predictive Analytics Platform

Page 46 Version 1.0 12 November 2018

Confidentiality: EC Distribution

These types of machine learning packages offer very powerful and sophisticated APIs

for big data scientist. Therefore, it is not realistic trying to develop a Predictive

Analytics Training Web Service with the aim to hide the complexity of such task to

non-experts. Such a trial would end up:

 Or with (a) a very simplistic service with very limited functionality.

 Or with (b) a very complex service, even more complex that the API’s

themselves, and of course useless for non-expert people.

SAFIRE takes the following approach:

 Regarding model definition and training, SAFIRE will define templates

consisting in source code with examples that will allow non-expert users to

define and train medium complexity models.

 Regarding prediction generation, SAFIRE will develop a REST Web Service

that will allow non-expert users to easily generate predictions by invoking

previously trained models.

Next sections describe prediction service specifications and some examples of the

source code templates for training that will be developed in the full prototype.

4.4.3.2 Prediction Service

Predictive Analytics Prediction REST Web Service (or simply Prediction Service) will

be implemented as a:

 REST Web Service developed in Java with Spring. The service will accept

client’s prediction requests and will answer with predicted values. This

service will be accessible in two ways:

o From a Web navigator such as Internet Explorer, Google Chrome, etc.

o From a BC REST Web Client typically developed in java with Spring.

o Any other SAFIRE modules.

The service will:

o Receive an input consisting mainly in a Spark dataframe in JSON

format. The input dataframe will consist in a collection of Sparks’s

Dataset<Row> representing the samples for which a prediction is

required.

o Invoke a predictive modelling to predict the values according to the

input dataframe.

 D2.5 Final Specification of Predictive Analytics Platform

12 November 2018 Version 1.0 Page 47

Confidentiality: EC Distribution

o Return the values as additional columns to the input dataframe.

 REST Web Clients developed in Java with Spring. As mentioned earlier,

clients can be BC applications, or other SAFIRE modules. A template of

Spring java REST Web Service’s Client will be developed in Java with

Spring so that prediction service can be easily accessible for non experts,

writing their own specialized instances of clients in a easy way.

Service Specifications

This section specifies the input parameters of the service and the specification of the

answer returned by service.

Service name

 String SafirePrdAnalyticsPredictor

Parameters in the Request

 String ipAddress – Identifies the ip address where the service is located.

 String port – Connection port to the service.

 long clientId – Identifies the client’s request. Can be any number provided

by the client. This identification will be included back with the answer.

 String clientTopic – Client topic is a string provided by the client. It is

simply a complement to the client’s request and might be the empty string.

This topic will be included back with the answer and can help the client to

indentify better the answer. An example of client’s topic may be

“Boil_detection_25-Oct-2018_16-51-00” that identifies a boiling experiment.

 String modelName – Upon request, the service will (a) invoke and load a

previously trained predictive analytics model and (b) will call the model to

predict values according to dataFrameRowDataJSON parameter (see below).

 String backendName – Indicates the backend that will process the

invocation. Allowed values are: spark or keras

 String dataFrameColNamesJSON – Contains the dataframe column names in

JSON format, according to the following syntax:

{"dataFrameColNames":["name1","name2",....]}

Example (three columns case):

{"dataFrameColNames":["id","text","label"]}

 String dataFrameColTypesJSON – Contains the dataframe column types in

JSON format. Allowed types are integer, double, string, arrayInteger,

arrayDouble. Syntax is as follows:

D2.5 Final Specification of Predictive Analytics Platform

Page 48 Version 1.0 12 November 2018

Confidentiality: EC Distribution

{"dataFrameColTypes":["type1","type2", ...]}

Example (three columns case):

{"dataFrameColTypes":["integer","string","double"]}

 String dataFrameRowDataJSON – Contains the dataframe rows in JSON

format. Each row must have the number of values specified in

dataFrameColNamesJSON with its corresponding type specified in

dataFrameColTypesJSON. Syntax is as follows:

{"dataFrameRowData":
[[row1data1, row1data2, ...],
[row2data1, row2data2, ...],
[row3data1, row3data2, ...],

...
]}

Example 1 (two rows with three columns of type integer, string, double):

{"dataFrameColNames":["id","text","label"]}
{"dataFrameColTypes":["integer","string","double"]}
{"dataFrameRowData":

[[7,"this is an example ssd", 1.0],
 [8,”another text”, 0.0]]}

Example 2 (two rows with one column of type arrayDouble):

{"dataFrameColNames":["currentValues"]}
{"dataFrameColTypes":["arrayDouble"]}
{"dataFrameRowData":

[[[1.456, 2.3456, 3.2345, 1.3456]],
[[2.3737, 4.2829, 1.2876, 8.7625]]}

Answer given by the service

The service will always return a JSON string containing the following fields:

 long callCount - Represents an automatic counter with the number of times

the service has been requested since it was started (just informative purpose).

 long clientId- The client identification that was provided by the client in

the request.

 long clientTopic - The client topic that was provided by the client in the

request.

 String modelName – The predictive model that was provided by the client in

the request.

 String backendName – The backend that was provided by the client in the

request.

 D2.5 Final Specification of Predictive Analytics Platform

12 November 2018 Version 1.0 Page 49

Confidentiality: EC Distribution

 String dataFrameRowDataPredictionJSON – In this parameter, the service

returns in this parameter the predicted values for each row received in the

request’s param dataFrameRowDataJSON. The syntax of the JSON string

(similar to that of dataFrameRowDataJSON) is the following:

{"dataFrameRowDataPrediction":
[[Row1Prediction1, Row1Prediction2, ...],
 [Row2Prediction1, Row2Prediction2, ...],
 [Row3Prediction1, Row3Prediction2, ...],

...
]}

Example: (predicted values for three rows, where each predicted value is a

double):

{"dataFrameRowDataPrediction":

[[0.9878],
 [0.45627],
 [0.87265]
]}

Note: The number of predicted values per row and their types is implicitly

defined in the predictive model, but not defined in the request. Therefore, the

client receiving the answer must know the expected number and types of

fields.

 String errorDescription – The description of the error when the service

execution fails (retCode <> 0).

 int retCode – Return code value is 0 when the service execution succeed,

and non-zero otherwise.

Example of Request

The client sends a request as follows (Electrolux case example):

http://localhost:8080/SafirePrdAnalyticsPredictor?

clientId=1&

clientTopic=Boil_detection_26-10-2018_10-57-41&

modelName=electroluxNNTraineModelCurF08.h5&

backendName=keras&

dataFrameColNamesJSON=

{"dataFrameColNames":["currentValues"]}&

dataFrameColTypesJSON=

{"dataFrameColTypes":["arrayDouble"]}&

dataFrameRowDataJSON=

{"dataFrameRowData":[[[1.54418102, 1.48782741, ...]]]}

D2.5 Final Specification of Predictive Analytics Platform

Page 50 Version 1.0 12 November 2018

Confidentiality: EC Distribution

Example of Answer

The service processes the request and answers with the following:

ClsSafirePrdAnalyticsPredictorWebServiceAnswer {

callCount=1,

clientId=1,

clientTopic= Boil_detection_26-10-2018_10-57-41,

modelName=electroluxNNTraineModelCurF08.h5,

backendName=keras,

prediction={"dataFrameRowDataPrediction":[[0.9015398025512695]]},

errorDescription=””,

retCode=0}

In this particular case, the answer contains the prediction of the single sample passed as

parameter being boiling (90,15%).

Invoking the Prediction Service from a Web Navigator

The Prediction Service will also be callable from a Web navigator. Figure 4-8 shows a

call to the service executed from a web navigator (in this case Google Chrome) and the

response given by the service (the same as shown in Section 4.4.3.1).

Figure 4-8 – Predictive Analytics Web Service Call from a Web Navigator.

Template for invocation from a Java Client Specifications

SAFIRE full prototype will develop Source Code templates for an easy development of

REST java clients. These templates will be fully explained in the final full prototype

development report. As an example of specifications, a template will be composed by

the two classes described below.

Class ClsSafirePrdAnalyticsPredictorWebServiceAnswer

This class represents a Java client. Only the section with TODO must be modified by the

end-user using the template:

@SpringBootApplication
public class ClsSafireWebServiceRestClientTemplate {

 private static final Logger log =

LoggerFactory.getLogger(ClsSafireWebServiceRestClientTemplate .class);

 D2.5 Final Specification of Predictive Analytics Platform

12 November 2018 Version 1.0 Page 51

Confidentiality: EC Distribution

 public static void main(String args[]) {
 SpringApplication.run

(ClsSafireWebServiceRestClientTemplate .class);
 }

 @Bean
 public RestTemplate restTemplate(RestTemplateBuilder builder) {
 return builder.build();
 }

 @Bean
 public CommandLineRunner run(RestTemplate restTemplate) throws Exception {

 return args -> {

 // Call service
 CallService(restTemplate);
 };
 }

 private void CallService(RestTemplate restTemplate) {

 // TODO
 // Define call parameters
 String port = "8080";
 long clientId = 1;
 String topic = "Boil_detection_29-oct-2018_12-08-00";
 String modelName = "electroluxNNTraineModelCurF08.h5";
 String backendName = "keras";

 // TODO
 // Generate the sample to predict
 // The key dataframe elements must be defined
 // The columns names, types and data values
 String dataFrameColNamesJSON =
 "{\"dataFrameColNames\":[\"currentValues\"]}";
 String dataFrameColTypesJSON =
 "{\"dataFrameColTypes\":[\"arrayDouble\"]}";
 String dataFrameRowDataJSON =
 "{\"dataFrameRowData\":"
 + "[[[1.456, 2.3456, 3.2345, 1.3456]],"
 + "[[2.3737, 4.2829, 1.2876, 8.7625]]}";

 // Encode the data frame elements
 // This is necessary as they contain reserved chars for http requests
 dataFrameColNamesJSON =

UriUtils.encodeQueryParam(dataFrameColNamesJSON,"UTF-8");
 dataFrameColTypesJSON =

UriUtils.encodeQueryParam(dataFrameColTypesJSON,"UTF-8");
 dataFrameRowDataJSON =

UriUtils.encodeQueryParam(dataFrameRowDataJSON,"UTF-8");

 // Build the call to the prediction service
 String serviceCall =
 "http://localhost:" + port + "/SafirePrdAnalyticsPredictor?" +
 "clientId=" + String.valueOf(clientId) + "&" +
 "clientTopic=" + topic + "&" +
 "modelName=" + modelName + "&" +
 "backendName=" + backendName + "&" +
 "dataFrameColNamesJSON=" + dataFrameColNamesJSON + "&" +
 "dataFrameColTypesJSON=" + dataFrameColTypesJSON + "&" +
 "dataFrameRowDataJSON=" + dataFrameRowDataJSON;

 // Call the prediction service
 ClsSafirePrdAnalyticsPredictorWebServiceAnswer answer =

restTemplate.getForObject
(serviceCall,
ClsSafirePrdAnalyticsPredictorWebServiceAnswer.class);

D2.5 Final Specification of Predictive Analytics Platform

Page 52 Version 1.0 12 November 2018

Confidentiality: EC Distribution

 // TODO
 // Process the answer
 // In this case just print to log
 log.info(answer.toString());
 }
}

Class ClsSafirePrdAnalyticsPredictorWebServiceAnswer

This class represents the answer given by the prediction service and does not need any

modifications, and can be used as-is:

@JsonIgnoreProperties(ignoreUnknown = true)
public class ClsSafirePrdAnalyticsPredictorWebServiceAnswer {

 // Represents an automatic counter
 // with the number of times the
 // service has been requested
 private long callCount;

 // Id value passed by the caller
 // Will be returned back as it is
 private long clientId;

 // Topic value passed by the caller
 // Will be returned back as it is
 private String clientTopic;

 // Prediction Model name
 // requested by the caller
 private String modelName;

 // Prediction engine backend
 // requested by the caller
 // Allowed values are: spark, keras
 private String backendName;

 // List of Predicted Data Frame Rows values
 // Contains a JSON list with the Predictied Rows
 // produced by the model. It is responsible
 // of the caller to interprete the meaning of
 // the values
 private String dataFrameRowDataPredictionJSON;

 // Error description
 // when retCode != 0
 private String errorDescription;

 // 0-Success, <>0-Error
 private int retCode;

 public ClsSafirePrdAnalyticsPredictorWebServiceAnswer() {
 }

 public long getCallCount() {
 return callCount;
 }
 public void setCallCount(long callCount) {
 this.callCount = callCount;
 }

 public long getClientId() {
 return clientId;
 }
 public void setClientId(long clientId) {
 this.clientId = clientId;

 D2.5 Final Specification of Predictive Analytics Platform

12 November 2018 Version 1.0 Page 53

Confidentiality: EC Distribution

 }

 public String getClientTopic() {
 return clientTopic;
 }
 public void setClientTopic(String clientTopic) {
 this.clientTopic = clientTopic;
 }

 public String getModelName() {
 return modelName;
 }
 public void setModelName(String modelName) {
 this.modelName = modelName;
 }

 public String getBackendName() {
 return backendName;
 }
 public void setBackendName(String backendName) {
 this.backendName = backendName;
 }

 public String getDataFrameRowDataPredictionJSON() {
 return dataFrameRowDataPredictionJSON;
 }
 public void setDataFrameRowDataPredictionJSON(String dataFrameRowDataPredictionJSON) {
 this.dataFrameRowDataPredictionJSON = dataFrameRowDataPredictionJSON;
 }

 public String getErrorDescription() {
 return errorDescription;
 }
 public void setErrorDescription(String errorDescription) {
 this.errorDescription = errorDescription;
 }

 public int getRetCode() {
 return retCode;
 }
 public void setRetCode(int retCode) {
 this.retCode = retCode;
 }

 @Override
 public String toString() {
 return "ClsSafirePrdAnalyticsPredictorWebServiceAnswer {" +
 "callCount = " + Long.toString(callCount) +
 ", clientId = " + Long.toString(clientId) +
 ", clientTopic = " + clientTopic +
 ", modelName = " + modelName +
 ", backendName = " + backendName +
 ", prediction = " + dataFrameRowDataPredictionJSON +
 ", errorDescription = " + ((retCode != 0) ? errorDescription : "Ok") +
 ", retCode = " + Long.toString(retCode) +
 '}';
 }
}

Speed Specifications

The SAFIRE project aims at real-time processing and therefore Web Service execution

time must meet that requirement. However, real-time is a concept relative to the

application and the requirements can be different for each application. For example, in

the case of Electrolux boiling detection, real-time means basically the order of one

D2.5 Final Specification of Predictive Analytics Platform

Page 54 Version 1.0 12 November 2018

Confidentiality: EC Distribution

second. Execution speed depends obviously on the connection but also in the predictive

model complexity.

As a general requirement, for medium size models and good quality connection, real-

time requirement will be understood as execution time in the order of a few seconds.

4.4.3.3 Modelling and training Templates

SAFIRE’s full prototype will develop Source Code templates for an easy development

of predictive model definition and training. Examples developed for Business Cases

will be developed as instances of theses templates and will be fully explained in the full

prototype report.

As an example of template, below is the python source code for a simple template of a

logistic regression (this function is part of several source code files).

def trainModelLR(dataFrame, dataFrameFeatureColNames):

 # Assemble the input to produce the features column
 assembler = VectorAssembler(inputCols=dataFrameFeatureColNames, outputCol="features")

 # TODO
 # Select the machine learning algorithm and its parameters
 # In this case a Logistic Regression has been selected

 lr = LogisticRegression(maxIter = 100, regParam = 0.01)

 # Chain in a pipeline the transformations
 # and machine learning algorithm

 pipeline = Pipeline(stages = [assembler, lr])

 # TODO
 # Create a Parameter Grid for Cross Validation
 # Assign a range to the hyper parameter for fine-tuning

 paramGrid = (ParamGridBuilder()
 .addGrid(lr.regParam, [0.01, 0.1, 0.3, 0.5]) # regularization parameter
 .addGrid(lr.maxIter, [10,25, 50, 100]) # regularization parameter
 .addGrid(lr.elasticNetParam, [0.0, 0.1, 0.2]) # Elastic Net Parameter(Ridge=0)
 .build())

 # Define cross validation model
 crossval = CrossValidator(estimator=pipeline,
 estimatorParamMaps=paramGrid,
 evaluator=BinaryClassificationEvaluator(),
 numFolds=5)

 # Fit (train) the model
 model = crossval.fit(dataFrame)

 # Return the model bestModel
 return model

As another example of template, below is the python source code for a simple template

of a random forest tree (this function is part of several source code files). It is

interesting to note here that, following Spark’s philosophy, it is very easy to interchange

the algorithms to use to experiment with different alternatives. The code of the logistic

regression and the random forest tree is very similar.

def trainModelDT(dataFrame, dataFrameFeatureColNames):

 D2.5 Final Specification of Predictive Analytics Platform

12 November 2018 Version 1.0 Page 55

Confidentiality: EC Distribution

 # Assemble the input to produce the features column

 assembler = VectorAssembler(inputCols=dataFrameFeatureColNames, outputCol="features")

 # TODO
 # Select the machine learning algorithm and its parameters
 # In this case a Decision Tree Classifier has been selected

 dt = DecisionTreeClassifier()

 # Chain in a pipeline the transformations
 # and machine learning algorithm

 pipeline = Pipeline(stages = [assembler, dt])

 # TODO
 # Create a Parameter Grid for Cross Validation
 # Assign a range to the hyper parameter for fine-tuning

 paramGrid = (ParamGridBuilder()
 .addGrid(dt.maxDepth, [5, 10, 15, 20])
 .addGrid(dt.maxBins, [5, 10, 20, 40])
 .build())

 # Define cross validation model
 crossval = CrossValidator(estimator=pipeline,
 estimatorParamMaps=paramGrid,
 evaluator=BinaryClassificationEvaluator(),
 numFolds=5)

 # Fit (train) the model
 model = crossval.fit(dataFrame)

 # Return the trained model
 return model

4.4.3.4 Testing with Electrolux BC

Implementation in the final prototype will be tested with the Electrolux Boiling Point

detection test case. Figure 4-9 shows the on-line detection process. First (1) the cooking

process is continually (second by second) uploading currents data (currents in the coil),

(2) the predictive analytics prediction service is called to decides if (with the data

available so far) the water is boiling, and (3) when the water is boiling, the cook is

notified.

Figure 4-9. Electrolux – Online estimation of boiling point.

D2.5 Final Specification of Predictive Analytics Platform

Page 56 Version 1.0 12 November 2018

Confidentiality: EC Distribution

Predictive Analytics source code templates will be used to experiment with different

deep learning alternatives to show the power of SAFIRE to predict the boiling point of a

cooking process (Figure 4-10). Alternatives to test in full prototype will be:

 Spark – Define Regressions, Decision Trees, etc.

 Keras/TensorFlow – Define neural networks alternatives to those already

experimented in the early prototypes (with good results).

Figure 4-10. Electrolux Boling Experiment showing detail of water temperature and current F09.

4.4.3.5 Testing with ONA Electroerosion BC

Implementation in the final prototype will be tested, among others, with the ONA

Electroerosion WEDM cutting process test case, trying to detect the event of width

changing during cutting (Figure 4-11).

 D2.5 Final Specification of Predictive Analytics Platform

12 November 2018 Version 1.0 Page 57

Confidentiality: EC Distribution

Figure 4-11: WEDM cutting with changing thickness parts.

WEDN process is generated by short electrical discharges between the cutting wire of

the machine and the part to be machined through a dielectric fluid (deionised water).

Figure 4-12 shows the voltage/time profile of several discharges.

Figure 4-12: Voltage profile of several discharges.

Predictive Analytics work initiated in the ONA test case in the Early prototype, trying to

predict the width changing from the discharges voltage patterns, will be completed in

the full prototype by using source code templates to generate experiment with different

deep learning alternatives to show the power of SAFIRE to predict the part’s width

change in advance. Alternatives to test in full prototype will be:

 Spark – Define Regressions, Decision Trees, etc.

 Keras/TensorFlow – Complete neural networks experiments initiated in the

early prototype.

4.4.4 Data Quality Assurance Specification

Big data technologies were developed because traditional technologies (and the human

beings using them) could not handle such amounts of data, and they carry out a great

deal of automation and algorithmic decision making. This lesser human involvement

D2.5 Final Specification of Predictive Analytics Platform

Page 58 Version 1.0 12 November 2018

Confidentiality: EC Distribution

means that the quality of the data carries even greater importance than it did before data

went “big”.

There is no consensus on how to define data quality. However, it is commonly

measured in six dimensions in the literature: completeness, timeliness, conformity,

integrity, consistency and accuracy. The following sections describe how data quality

issues could raise in any of these dimensions, and how they are tackled in the data

ingestion module of the SAFIRE project.

Figure 4-13. Dimensions of Data Quality.

Completeness

Completeness refers to all necessary data being present. Data can be complete without

all fields having values because some fields are optional, such a person’s middle name

or secondary phone number.

In SAFIRE’s data ingestion module, data is dumped into two independent services: a

relational database for persistence, and a publish/subscribe broker for further

redistribution of data. The check for completeness is carried out by the relational

database. In most relational databases, fields of a table can be declared either as

allowing a missing (null) value or not. A null value represents a field without a value. In

such cases, if a row with a null value for a field not declared as allowing null is

attempted to insert, the insertion will fail and raise and error.

Timeliness

 D2.5 Final Specification of Predictive Analytics Platform

12 November 2018 Version 1.0 Page 59

Confidentiality: EC Distribution

Timeliness refers to whether the data is available or not when it is expected to be. For

example if data from Monday is available at midnight on Tuesday to generate daily

reports. Timeliness issues can raise from a wide variety of problems: a thunderstorm

could take down the power of a server, another server might be running out of memory

or disk space, slowed down significantly and stopped accepting new incoming data… if

any link in a chain fails, it will result in the rest of the data pipeline not being able to

comply to timeliness. This dimension is one of the hardest to ensure because full

connectivity is usually out of the developer’s control and issues can keep happening

even if the rest of the system has been thoroughly tested and corrected. Also, any other

dimension not being met will cause timeliness issues because the data pipeline will be

halted by the issue.

In SAFIRE, we first tackled this by adding a monitoring node within the data ingestion

system. This monitor observes the industrial data incoming from their respective API

and waits until the data stream is stopped. If no new messages are received within a

small but significant amount of time, an alarm is raised and the operator gets an email

with the latest log file from the data ingestion system. The stream can be cut by

different errors that can be grouped into two groups:

 Expected errors such as disconnections from either the server, or local network.

 Unexpected errors that have not been handled yet.

Expected errors are already handled by the system and trigger a reattempt after a

prudent delay of a few seconds or minutes so as to avoid unnecessary attempts until the

connection is restored. Unexpected errors, on the other hand, are unrecoverable until

they have been analyzed and the system has been adjusted to handle them. In these

instances, the operator receiving the latest log file ensures that the log containing the

error will not be lost if the operator is not quick enough to identify the cause in the time

it takes the temporary log file to be overwritten.

If the stream is restored, for example when a reconnection attempt has succeeded, the

operator also receives an email with a notification so as to avoid unnecessary workload

if the error has been handled.

However, this is just one small attempt to ensure data timeliness. The system that was

just described is an internal mechanism; it is part of the system that it monitors. If the

entire server or datacenter fails, the monitor system will shut down as well, and no alert

will be generated. This system has to be complemented with an external monitoring

system that checks whether the data ingestion module has placed the data where it is

supposed to do.

Conformity

The conformity dimension refers to whether data complies with a set of predefines

standards. Examples of these standards can be dates following the same “yyyy-MM-dd”

format or the messages following the same JSON structure.

D2.5 Final Specification of Predictive Analytics Platform

Page 60 Version 1.0 12 November 2018

Confidentiality: EC Distribution

The data ingestion system makes several checks in this regard:

 As soon as JSON messages are received through the data stream, it is checked

that they do contain the expected data node.

 When messages are processed, it is done so in a way that if they do not conform

to the expected format, the processing will fail and raise an alert.

 Dates are handled using the expected format. The process will fail if the format

is not the expected.

Integrity

This dimension refers to each piece of data being connected to other data. For example,

a violation of this dimension would be, in the domain of manufacturing, a machine

having a location field pointing to a location not present in the database.

Just like with the Completeness dimension, the control over the integrity dimension is

carried out by the relational database. Relational databases describe tables and the

relationships between them, and if configured to do so, enforce that these relationships

are met. Returning to the example presented before, a relational database will not allow

the insertion of a machine record, if the location of this record points to a location not

present in the location table.

Consistency

Data being consistent means that all systems reflect the same information. This does not

necessarily only refer to two identical fields in two datasets having the same value, but

also cases where one value can be inferred from another, for example birthday and age.

This usually requires creating a monitoring system independent of any data repository

that periodically checks the consistency of data across different systems by checking it

against a predefined set of specific rules.

In SAFIRE, the data ingestion module has such a monitoring system. However, none of

the use cases require of value inference so only direct comparisons between data items

in different systems are made.

Accuracy

Data accuracy is one of the hardest dimensions to measure, because it is hard to assess if

data is accurate or not without assuming the first data entry point already receives

accurate data. However it is a very important dimension, because if data is detected not

to be accurate, the depending data pipelines should be killed.

On the one hand, data can be checked against a predefined schema to assess the

accuracy of the structure of the data. On the other hand, checking for values requires

other approaches. Some data fields can only have a finite set of values. In these cases, at

 D2.5 Final Specification of Predictive Analytics Platform

12 November 2018 Version 1.0 Page 61

Confidentiality: EC Distribution

least a sanity check can be performed to see if whether the actual value belongs to this

finite set. With numerical fields that can take an infinite number of values, checking

these values can get tricky. These fields present variability by nature, and it can be hard

to define how much of variability is acceptable: too low of a threshold and a lot of false

positives will be generated, leading to incident fatigue and the human operator ignoring

future alerts to his or her own discretion; too high of a threshold and most incidents will

go unnoticed, damping the effectiveness of the monitoring. A middle ground can be

achieved establishing two thresholds. If the variability crosses the first threshold (e.g.

10%), the process will continue but a human operator will be alerted and urged to check

whether the variability is legitimate. If the variability crosses the second threshold (e.g.

30%), the human operator will also be alerted, but in this case the process will be

stopped.

In SAFIRE’s data ingestion module the data’s structure is checked against schemas in

various steps of the process. The values of discrete fields are handled by the integrity

checking measures of the relational database as all the possible values for discrete

variables are stored in their respective tables. Finally, regarding numeric fields that can

take an infinite number of values, a threshold-based monitoring system has been put in

place. This monitoring system will be configured with acceptable ranges for each of the

monitored fields. The two threshold system described in the paragraph above will be

implemented.

4.4.5 GDPR Compliance Specification

Currently, none of the use cases of the SAFIRE project handle personal data. However,

if future cases where the SAFIRE technologies and methodologies are applied, do

handle personal data, and this data pertains to EU citizens, the businesses handling this

information will have to comply with Regulation (EU) 2016/679, also known as the

General Data Protection Regulation or GDPR.

This regulation came into effect on May 25
th

, 2018 and aims to protect personally

identifiable data (PII) every step of the way while giving the consumer ultimate control

over what happens to that data. Any business handling PII of European Union citizens

must adhere to this regulation, even in the company itself resides outside of the EU.

Consent must be requested in a clear, easy to understand way, with users knowing

exactly what they are giving their consent to. Consumers must be provided with tools to

control, monitor, check, and delete data related to them if they want to. In fact, revoking

consent should be made as easy as giving it.

The GDRP also regulates the protection of the PII. The regulation promotes

pseudonymisation of data: where business logic data is anonymised by removing the

identifiable data but keeping some sort of way to single out an individual user, for

example using a “user id”, and keeping the PII data somewhere else. Other accepted

approaches are the complete anonymisation of data so it cannot be tied back to an

individual, or encryption. For some types of organizations the GDPR requires hiring a

Data Protection Officer (DPO). Furthermore, the regulation requires mandatory breach

notification to affected individuals within 72 hours of the discovery.

D2.5 Final Specification of Predictive Analytics Platform

Page 62 Version 1.0 12 November 2018

Confidentiality: EC Distribution

Another aspect related to big data and covered by the GDPR is profiling: algorithmic

inference drawn from data about an individual, a tool widely used in big data. The

GDRP regulates the use of profiling by trying to distinguish benign and harmful uses of

it and allowing citizens not to be subject to fully automated profiling. The definition of

harmful uses of profiling was discussed throughout the development of the regulation as

“which produce(s) legal effects concerning him or her or similarly significantly affects

him or her”. The goal of the regulation is not to forbid the use of profiling, but

providing the affected individuals with information about the logic behind it, the

significance and consequences of it for the individual, disclosing the use of such

automated decision-making upon request, and the basis to request human intervention in

the process, and providing the individual with the right “to express his or her point of

view and to contest the decision”.

Currently, none of the use cases of the SAFIRE project handle personally identifiable

data. Given the manufacturing application field of the project, it is unlikely that even

future implementation cases will handle such data. However it is possible that such

unforeseen new cases might come to be. In these cases, the involved companies must

comply to the GDPR if they handle data pertaining EU citizens.

4.5 SPECIFICATION OF HIGH-LEVEL ARCHITECTURAL DESIGN

The Full Prototype architecture consists in a set of Virtual machines running in a

secured public cloud environment, more concisely in a Virtual Private Cloud that is

secured as it is running inside a private isolated network. Each machine will be

provisioned with different software tools and configured to support most of the

platform’s required features.

 D2.5 Final Specification of Predictive Analytics Platform

12 November 2018 Version 1.0 Page 63

Confidentiality: EC Distribution

 Figure 4-14. Early end Full Prototype architecture.

In Figure 4-13 the overall architecture can be seen. Below is the description of the

different components:

 Bastion host: This machine will be the entry point of the platform for external

users providing a secured VPN tunnel for accessing the private network and

therefore allowing access to the different services.

 GUI Machines (Superset/Zeppelin): this machine will be the entry point for both

data science prototyping via Zeppelin and advanced visualization via Superset.

 Cassandra/Spark: this machine will be provisioned with the No-SQL database

along with the distributed analytics engine.

 PostgreSQL: this is the relational SQL database in charge of storing relational

data of the platform. In this case, the one provided by Amazon Web Services

will be used as it will allow us to use a standard database without taking care of

its maintenance.

 Amazon S3: Amazon S3 is a Software as a Service (SaaS) that provides storage

service through web service interfaces. It allows storing data in a reliable way

easily and has support for almost all the Big Data landscape tooling.

D2.5 Final Specification of Predictive Analytics Platform

Page 64 Version 1.0 12 November 2018

Confidentiality: EC Distribution

5. TECHNOLOGY SPECIFICATION OF SOFTWARE TOOLS

This section provides a list of software tools to be used for the Predictive Analytics

Platform. All tools are open-source software.

 Java

Programming Language – www.java.com

 Python

Programming Language - https://www.python.org/

 IDE Eclipse

Development Environment – http://www.eclipse.org

 Apache Tomcat

Runtime Environment/Application Server - http://tomcat.apache.org/

 Apache NiFi

Scalable data routing, transformation, and system mediation logic -

https://nifi.apache.org/

 Apache Kafka

Distributed Streaming Platform - https://kafka.apache.org/

 Apache Spark

Unified analytics engine for large-scale data processing - https://spark.apache.org/

 Apache Cassandra

Distributed NoSQL database management system- https://cassandra.apache.org/

 Apache Zeppelin

Web-based notebook that enables data-driven, interactive data analytics and

collaborative documents with SQL, Scala and more- https://zeppelin.apache.org/

 Apache Superset

Business intelligence web application - https://superset.apache.org/

 Redis

In-memory data structure store, used as a database, cache and message broker-

https://redis.io/

 Terraform

Tool for building, changing, and versioning infrastructure as code, safely and

efficiently - https://www.terraform.io

 Ansible

http://www.java.com/
https://www.python.org/
http://www.eclipse.org/
http://tomcat.apache.org/
https://nifi.apache.org/
https://kafka.apache.org/
https://spark.apache.org/
file:///D:/prj/europeos/safire/svn/WP2/D-2.2/Distributed
https://en.wikipedia.org/wiki/NoSQL
https://en.wikipedia.org/wiki/Database
https://cassandra.apache.org/
https://redis.io/
https://www.terraform.io/

 D2.5 Final Specification of Predictive Analytics Platform

12 November 2018 Version 1.0 Page 65

Confidentiality: EC Distribution

Software that automates software provisioning, configuration management, and

application deployment - https://www.ansible.com/

 Keras

High Level Neural Networks - https://keras.io/

 Tensor Flow

Machine Learning Software - https://www.tensorflow.org/

 Deeplearning4j

Library of deep learning for Java - https://deeplearning4j.org/

 Spring

Web Application Framework - http://www.springsource.org/

 Hibernate

Data Persistence - http://hibernate.org/

 Docker

Software Containerization Platform - https://www.docker.com/

 GIT,

Version Control - http://git-scm.com/ http://git-scm.com/

6. FULL PROTOTYPES FEATURE SET

The full prototype presents the current feature set:

 Integration with Apache Kafka for data ingestion.

 Real-time/batch analytics capabilities using Spark Manchine Learning MLlib

library and advanced analytics using Tensorflow & Keras.

 Data Science rapid Prototyping using Apache Zeppelin, this tool allows basic

visualizations too.

 NoSQL storage using Cassandra.

 Platform High Availability.

 SQL storage using PostgreSQL.

 Advanced Visualization capabilities using Apache Superset.

 REST APIs for interaction with other SAFIRE modules.

 Scripting using Terraform and Ansible for deployment of the platform on

Amazon Web Services

https://www.ansible.com/
https://keras.io/
https://www.tensorflow.org/
https://deeplearning4j.org/
http://www.springsource.org/
http://hibernate.org/
https://www.docker.com/
http://git-scm.com/
http://git-scm.com/

D2.5 Final Specification of Predictive Analytics Platform

Page 66 Version 1.0 12 November 2018

Confidentiality: EC Distribution

7. REQUIREMENTS COVERAGE

7.1 DATA MINING AND ANALYTICS REQUIREMENTS FROM INDUSTRIAL BUSINESS

CASES

This table represents the coverage for the full prototype.

Req.
No.

Requirement Overall Priority Coverage

U78 Supports data mining to extract useful
patterns about operator behaviour

SHALL True

U79 Supports data mining to extract useful
patterns about machine status

SHALL True

U80 Supports data mining to extract useful
patterns about production process
status

SHALL True

U81 Provides support for selection of
sensors / systems to be analysed

SHALL True

U82 Provides support for selection of
information sources to be analysed

SHALL True

U83 Provides support for data/sensor
composition functionality

SHALL False

U84 Able to provide historical knowledge
about system deviations or problems

SHOULD True

U85 Able to provide decision support for
production line selection

SHOULD False

U86 Able to increase visibility of the
production process

SHALL True

U87 Supports analysis for algorithm
definition for boiling/temperature
control functionality

SHALL True

U88 Supports sensitivity analysis to noise SHALL False

U89 Supports main variation factor
identification and robust strategy for
minimising

SHOULD False

U90 Supports computational resources
estimation of machines

SHOULD False

U91 Supports estimation of performance
decrease for algorithm complexity
reduction

SHOULD False

U92 Supports process repeatability and
stability characterisation

SHALL False

U93 Supports Design of Experiments
(DOE) and Analysis of Variance

SHOULD True

 D2.5 Final Specification of Predictive Analytics Platform

12 November 2018 Version 1.0 Page 67

Confidentiality: EC Distribution

Req.
No.

Requirement Overall Priority Coverage

(ANOVA) analysis

7.2 PERFORMANCE REQUIREMENTS FROM INDUSTRIAL BUSINESS CASES

This table represents the coverage for the full prototype.

Req.
No.

Requirement Overall Priority Coverage

U115 Does not negatively affect the usual
production processes

SHALL True

U116 Support for scalability in the size of
cloud and computing resources

SHALL True

U117 Support for horizontal scalability to
many machines

SHALL True

U118 Capable of real-time data ingestion
(registering data)

SHALL True

U119 Capable of batch processing of data
(offline analysis)

SHALL True

U120 Capable of real-time data processing SHALL True

U121 Capable of providing real-time
reconfigurations / optimisations
(subject to network throughput limits)

SHALL True

U122 Able to analyse relevant data within a
given timeframe

SHALL True

U123 Capable of storing up to 5
TB/year/machine with resource
recycling facilities

SHALL True

U124 Provides support for Machine Learning
(Supervised / Unsupervised / Anomaly
Detection)

SHALL True

U125 Able to achieve required precision on
cooking process estimation /
optimisations

SHALL True

7.3 INTERFACE REQUIREMENTS FROM INDUSTRIAL BUSINESS CASES

This table represents the coverage for the full prototype.

Req.
No.

Requirement Overall Priority Coverage

U130 Able to access data stored in a
relational database

SHALL True

U131 Able to receive and send data from/to
a remote location

SHALL True

D2.5 Final Specification of Predictive Analytics Platform

Page 68 Version 1.0 12 November 2018

Confidentiality: EC Distribution

8. CONCLUSIONS

This document has described the Final Specifications of the full prototype of Predictive

Analytics Platform module to be developed in SAFIRE. The present deliverable is the

second incremental outcome (referenced as D2.2.2 in the technical annex with name

D2.5) of task T2.2 Specification of Predictive Analytics Platform and contains a) high

level architectural design and b) specifications of functionalities regarding realisation of

Predictive Analytics Platform Full prototype.

These specifications address requirements collected within WP1 regarding the real-time

big data predictive analytics platform to tackle the development of a full prototype of

the platform.

 D2.5 Final Specification of Predictive Analytics Platform

12 November 2018 Version 1.0 Page 69

Confidentiality: EC Distribution

9. REFERENCES

[1]. H. Shvachko, H. Kuang, S. Radia und R. Chansler, “The Hadoop Distributed File
System.,” Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Sytems
and Technologies (MSST), pp. pp 1-10, 2010.

[2]. Amazon AWS, [Online]. https://aws.amazon.com
[3]. Google Cloud, [Online]. https://cloud.google.com/
[4]. Microsoft Azure, [Online]. https://azure.microsoft.com/
[5]. IBM Watson, [Online]. http://www.ibm.com/big-data/us/en/big-data-and-

analytics/watson-foundations.html
[6]. SAP, [Online]. http://www.sap.com/pc/analytics/predictive-analytics.html
[7]. GE Predix Platform., [Online]. https://www.gesoftware.com/predix
[8]. MongoDB, [Online]. https://www.mongodb.com
[9]. Cassandra, [Online]. http://cassandra.apache.org/
[10]. [Online]. Available: https://www.mongodb.com/blog/post/salamander-using-open-

source-solutions-visualise-and-improve-banks-critical-internal
[11]. [Online]. Available: https://academy.datastax.com/resources/ing-groep-nv-exploiting-

hotel-cassandra
[12]. J. Shute und e. al., “F1: A Distributed SQL Database That Scales.“ Proc. VLDB En-

dowment, pp. 6(11), 1068–1079, 2013.
[13]. L. Jay und e. al., “Recent advances and trends in predictive manufacturing systems

in big data environment manufacturing Letters.“ 2013.
[14]. Flink, [Online]. http://flink.apache.org/
[15]. Spark, [Online]. https://spark.apache.org
[16]. Lambda Architecture, [Online]. http://lambda-architecture.net/stories/2016-07-16-IoT-

analytics-platform
[17]. Kappa Architecture, [Online]. http://milinda.pathirage.org/kappa-architecture.com/
[18]. No Lambda Architecture, [Online].

http://es.slideshare.net/helenaedelson/nolambda-combining-streaming-adhoc-
machine-learning-and-batch-analysis

[19]. V. Vavilapalli und e. al., „Apache Hadoop YARN: yet another resource negoti-
ator.,“ In: Proceedings of 4th ACM Symposium on Cloud Computing (SoCC
2013)., 2013.

[20]. B. Hindman und e. al., “Mesos: A platform for fine-grained resource sharing in
the data center.“ Technical Report UCB/EECS-2010-87, EECS Department,
University of California, Berkeley, May 2010.

[21]. Data Centre Operating System. [Online] https://dcos.io/
[22]. “Predictive analytics Techniques”. [Online]

https://en.wikipedia.org/wiki/Predictive_analytics#Machine_learning_techniqu
es

[23]. “A Tour of Machine Learning Algorithms”. [Online]
https://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/

[24]. “Logistic Regression”,[Online] https://en.wikipedia.org/wiki/Logistic_regression
[25]. “Multinomial Logistic Regression”, [Online]

https://en.wikipedia.org/wiki/Multinomial_logistic_regression
[26]. “Decision Trees”, [Online] https://en.wikipedia.org/wiki/Decision_tree
[27]. “Multivariate Adaptive Regression Splines”, [Online]

https://en.wikipedia.org/wiki/Multivariate_adaptive_regression_splines
[28]. “Multivariate adaptive regression splines and neural network models for pre-

diction of pile drivability”, Geoscience Frontiers, Volume 7, Issue 1, January
2016, Pages 45-52. Elsevier.

[29]. “Artificial Neural Networks”, [Online]
https://en.wikipedia.org/wiki/Artificial_neural_network

[30]. “Predictive Analytics Tools”, [Online]
https://en.wikipedia.org/wiki/Predictive_analytics#Tools

[31]. “Top Predictive Analytics Software”, [Online]
https://www.predictiveanalyticstoday.com/top-predictive-analytics-

https://aws.amazon.com/
https://cloud.google.com/
https://azure.microsoft.com/
http://www.ibm.com/big-data/us/en/big-data-and-analytics/watson-foundations.html
http://www.ibm.com/big-data/us/en/big-data-and-analytics/watson-foundations.html
http://www.sap.com/pc/analytics/predictive-analytics.html
https://www.gesoftware.com/predix
https://www.mongodb.com/
http://cassandra.apache.org/
https://www.mongodb.com/blog/post/salamander-using-open-source-solutions-visualise-and-improve-banks-critical-internal
https://www.mongodb.com/blog/post/salamander-using-open-source-solutions-visualise-and-improve-banks-critical-internal
https://academy.datastax.com/resources/ing-groep-nv-exploiting-hotel-cassandra
https://academy.datastax.com/resources/ing-groep-nv-exploiting-hotel-cassandra
http://flink.apache.org/
http://lambda-architecture.net/stories/2016-07-16-IoT-analytics-platform
http://lambda-architecture.net/stories/2016-07-16-IoT-analytics-platform
http://milinda.pathirage.org/kappa-architecture.com/
http://es.slideshare.net/helenaedelson/nolambda-combining-streaming-adhoc-machine-learning-and-batch-analysis
http://es.slideshare.net/helenaedelson/nolambda-combining-streaming-adhoc-machine-learning-and-batch-analysis
https://dcos.io/
https://en.wikipedia.org/wiki/Predictive_analytics#Machine_learning_techniques
https://en.wikipedia.org/wiki/Predictive_analytics#Machine_learning_techniques
https://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/
https://en.wikipedia.org/wiki/Logistic_regression
https://en.wikipedia.org/wiki/Multinomial_logistic_regression
https://en.wikipedia.org/wiki/Decision_tree
https://en.wikipedia.org/wiki/Multivariate_adaptive_regression_splines
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Predictive_analytics#Tools
https://www.predictiveanalyticstoday.com/top-predictive-analytics-software/#toppredictiveanalyticssoftware

D2.5 Final Specification of Predictive Analytics Platform

Page 70 Version 1.0 12 November 2018

Confidentiality: EC Distribution

software/#toppredictiveanalyticssoftware
[32]. “Comparison of Deep Learning Software”, [Online]

https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software
[33]. “Predictive Analytics Tools”, [Online]

https://www.predictiveanalyticstoday.com/predictive-analytics-tools/
[34]. “Predictive Model Markup Language”,[Online] http://dmg.org/pmml/v4-

3/GeneralStructure.html
[35]. “Predictive Analytics Process”, [Online]

https://en.wikipedia.org/wiki/Predictive_analytics#Predictive_Analytics_Proces
s

https://www.predictiveanalyticstoday.com/top-predictive-analytics-software/#toppredictiveanalyticssoftware
https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software
https://www.predictiveanalyticstoday.com/predictive-analytics-tools/
http://dmg.org/pmml/v4-3/GeneralStructure.html
http://dmg.org/pmml/v4-3/GeneralStructure.html
https://en.wikipedia.org/wiki/Predictive_analytics#Predictive_Analytics_Process
https://en.wikipedia.org/wiki/Predictive_analytics#Predictive_Analytics_Process

