

Project Partners: ATB, Electrolux, IKERLAN, OAS, ONA, The Open Group, University of York

Every effort has been made to ensure that all statements and information contained herein are accurate, however the

SAFIRE Project Partners accept no liability for any error or omission in the same.

© 2018 Copyright in this document remains vested in the SAFIRE Project Partners.

Project Number 723634

D5.4 Full Prototype of the SPT Framework

Version 1.0

31 December 2018

Final

Public Distribution

The Open Group

D5.4 Full Prototype of the SPT Framework

Page ii Version 1.0 31 December 2018

Confidentiality: Public Distribution

PROJECT PARTNER CONTACT INFORMATION

ATB

Sebastian Scholze

Wiener Strasse 1

28359 Bremen

Germany

Tel: +49 421 22092 0

E-mail: scholze@atb-bremen.de

Electrolux Italia

Claudio Cenedese

Corso Lino Zanussi 30

33080 Porcia

Italy

Tel: +39 0434 394907

E-mail: claudio.cenedese@electrolux.it

IKERLAN

Trujillo Salvador

P Jose Maria Arizmendiarrieta

20500 Mondragon

Spain

Tel: +34 943 712 400

E-mail: strujillo@ikerlan.es

OAS

Karl Krone

Caroline Herschel Strasse 1

28359 Bremen

Germany

Tel: +49 421 2206 0

E-mail: kkrone@oas.de

ONA Electroerosión

Jose M. Ramos

Eguzkitza, 1. Apdo 64

48200 Durango

Spain

Tel: +34 94 620 08 00

jramos@onaedm.com

The Open Group

Scott Hansen

Rond Point Schuman 6, 5
th

 Floor

1040 Brussels

Belgium

Tel: +32 2 675 1136

E-mail: s.hansen@opengroup.org

University of York

Leandro Soares Indrusiak

Deramore Lane

York YO10 5GH

United Kingdom

Tel: +44 1904 325 570

E-mail: leandro.indrusiak@york.ac.uk

 D5.4 Full Prototype of the SPT Framework

31 December 2018 Version 1.0 Page iii

Confidentiality: Public Distribution

DOCUMENT CONTROL

Version Status Date

0.1 Initial structure and outline 1 December 2018

0.5 Initial content 23 December 2018

1.0 Final version 31 December 2018

D5.4 Full Prototype of the SPT Framework

Page iv Version 1.0 31 December 2018

Confidentiality: Public Distribution

TABLE OF CONTENTS

1. Introduction ... 1

1.1 Overview.. 1

1.2 Approach Applied .. 1

1.3 Document Structure ... 2
2. Description of the NGAC Full Prototype (FP) ... 3

2.1 ‘ngac’ Policy Tool ... 4
2.1.1 Policy tool interactive commands ... 4
2.1.2 Command procedures and scripts ... 5
2.1.3 Implementation ... 6

2.2 ‘ngac-server’ Lightweight Policy Server ... 6
2.2.1 Policy Query Interface (PQI) .. 6
2.2.2 Policy Administration Interface (PAI) .. 7
2.2.3 Policy server command line arguments .. 9
2.2.4 Dynamic policy change ... 10
2.2.5 Policy Composition ... 10
2.2.6 Implementation ... 11

2.3 Policy Enforcement Point (PEP) and Resource Access Point (RAP) .. 11
2.3.1 PEP and RAP Templates .. 11
2.3.2 Implementation ... 12

2.4 Declarative Policy Language .. 12
2.4.1 Declarative Policy Language Definition ... 12
2.4.2 Example policy in declarative representation ... 14

2.5 Implemented FP Functionalities ... 14
3. Integration with Other Modules .. 16

3.1 NGAC-aware Applications .. 16

3.2 Policy Enforcement Point (PEP) and Resource Access Point (RAP) Architectural Pattern 16
3.2.1 PEP Policy Enforcement Interface (peapi) ... 17
3.2.2 RAP Resource Access Interface (raapi) .. 17

4. Installation and Operation ... 19

4.1 Installing and Running the ‘ngac’ policy tool ... 19
4.1.1 Install SWI-Prolog .. 19
4.1.2 Install the ‗ngac‘ source files and/or executable ... 19
4.1.3 Initiate the ‗ngac‘ policy tool .. 19
4.1.4 Test the installed ‗ngac‘ tool ... 19
4.1.5 Running the examples ... 20

4.2 Installing and Running the ‘ngac-server’ .. 20
4.2.1 Install SWI-Prolog .. 20
4.2.2 Install the ‗ngac‘ server source files and/or executable .. 20
4.2.3 Initiating the ‗ngac-server‘ .. 20
4.2.4 Test the installed ‗ngac-server‘ ... 21

5. NGAC Customisation ... 22

5.1 Current Customisations and Extensions .. 22
5.1.1 Adaptation and extensions to NGAC for SAFIRE.. 22

5.2 Extensions in Full Prototype ... 24
5.2.1 Importing Policies to the Server.. 24
5.2.2 Modifying Policy at Runtime .. 24
5.2.3 Policy Composition ... 25
5.2.4 Persistence of the Server Policy Database .. 25

 D5.4 Full Prototype of the SPT Framework

31 December 2018 Version 1.0 Page v

Confidentiality: Public Distribution

6. Software Tools ... 26
7. Conclusions and Plans .. 27
8. REFERENCES .. 28
9. APPENDIX A – Next Generation Access Control ... 29

9.1 NGAC Overview .. 29

9.2 NGAC Role in SAFIRE Architecture ... 29

9.3 NGAC Motivation .. 31

9.4 NGAC Policy Framework ... 31
10. APPENDIX B – NGAC-based Security Policy Representations ... 33

10.1 Graph Representation ... 33

10.2 Low-Level Representations ... 34

D5.4 Full Prototype of the SPT Framework

Page vi Version 1.0 31 December 2018

Confidentiality: Public Distribution

TABLE OF FIGURES

Figure 1: Our NGAC functional architecture with "unbundled" PEP & RAP .. 3
Figure 2: Example policy (a) expressed in the declarative representation .. 14
Figure 3: Assignment/Association Graphs ... 33
Figure 4: Independent derived privileges from Figure 3(a) and (b) .. 33
Figure 5: Combined policy graphs of Figure 3 ... 34
Figure 6: Derived privileges of the combined graphs of Figure 3 .. 34

TABLE OF TABLES

Table 1: Overview of implemented functionality ... 15

 D5.4 Full Prototype of the SPT Framework

31 December 2018 Version 1.0 Page vii

Confidentiality: Public Distribution

ABBREVIATIONS AND ACRONYMS

AD Active Directory

AP Abstract Platform

API Application Programming Interface

App Application

EP Early Prototype

EPP Event Processing Point

FoF Factories of the Future

FP Final Prototype

HW Hardware

I&A Identification and Authentication

IoT Internet of Things

IIoT Industrial Internet of Things

IIC Industrial Internet Consortium

IIRA Industrial Internet Reference Architecture

IISF Industrial Internet Security Framework

Impl Implemented

IT Information Technology

LDAP Lightweight Directory Access Protocol

NGAC Next Generation Access Control

OE Operating Environment (operating system)

OS Operating System (operating environment)

PAP Policy Access/Administration Point

PDP Policy Decision Point

PEI Policy Enforcement Interface

PEP Policy Enforcement Point

PImpl Partially Implemented

PIP Policy Information Point

PM Policy Machine

PQI Policy Query Interface

RAI Resource Access Interface

RAP Resource Access Point

RI Reference Implementation

SOPS System of Production Systems

SPTM Security Privacy and Trust Methodology/Mapping

SSF SAFIRE Security Framework (or SAFIRE SPT Framework)

SW Software

TBI To Be Implemented

UC Use Case

3PSM Third Party Security Mechanisms

D5.4 Full Prototype of the SPT Framework

Page viii Version 1.0 31 December 2018

Confidentiality: Public Distribution

EXECUTIVE SUMMARY

This document describes the full prototype of the software implementing the

functionality of the SAFIRE Security Privacy and Trust Framework as specified in

deliverable D5.5 and implementing the methodology described in deliverable D5.1,

thereby demonstrating the features and functionality of security services for the

SAFIRE solution.

The document provides a description of the SAFIRE implementation of the NGAC

standard, including the policy tool, the policy server, and the policy specification

language. It also describes the integration with other modules and the functional

architecture within which the components are to be deployed, and examples of how they

can be used. Installation and Operation of the full prototype software are addressed,

along with guidance for customisations for addressing diverse manufacturing

applications where SAFIRE may be deployed.

 D5.4 Full Prototype of the SPT Framework

31 December 2018 Version 1.0 Page 1

Confidentiality: Public Distribution

1. INTRODUCTION

1.1 OVERVIEW

As introduced in D5.2 Early Specification of the SPT Framework, and finalized in D5.5

Final Specification of the SPT Framework, the SAFIRE security, privacy and trust

effort intends to address two SAFIRE-relevant security challenges, and has two

principal thrusts in SAFIRE. These comprise the SAFIRE Security Framework (or

SAFIRE SPT Framework) (SSF):

 To address Security Challenge 1, that of being able to know the aggregate

security policy of the various policies independently enforced, according to their

configuration data, by distinct security mechanisms used within a complex

system: An implementation of the Next Generation Access Control (NGAC)

standard, that will provide the ability to specify aspects of policies

corresponding to distinct segments or mechanisms within the system, and to

compose those policy aspects to gain a unified and computable representation of

the composed policy.

 To address Security Challenge 2, that of being able to assess the initial adequacy

of the constellation of chosen security mechanisms and their respective

configurations, and their continuing adequacy after a reconfiguration or

optimisation has been applied: A comprehensive approach to security using the

Industrial Internet Consortium (IIC) Security Framework (IISF) as guidance for

the kinds of security functions that should be considered in a mission-critical

industrial deployment of SAFIRE within a System of Production Systems

(SOPS) Factories of the Future (FoF) setting.

1.2 APPROACH APPLIED

The first thrust, identified above, is realized by a software implementation of the NGAC

standard that embodies one of the innovations of the SAFIRE project. The second thrust

is realized by a methodology to assess the appropriateness and adequacy of security

mechanisms chosen for a particular deployment, including those of the underlying

platform as well as those provided by the NGAC implementation.

This document, D5.3 Early Prototype, describes the content of the first prototype of the

NGAC implementation. The companion document, D5.1 Methodology, elaborates the

methodology for the application of the IISF as well as methodology for the use of the

software components of the NGAC policy specification and enforcement mechanisms.

The SAFIRE software portion of the SPT Framework includes:

 The policy tool (‗ngac‘)

 The lightweight server (‗ngac-server‘)

 A functional architecture for using the ‗ngac‘ tool and ‗ngac-server‘

D5.4 Full Prototype of the SPT Framework

Page 2 Version 1.0 31 December 2018

Confidentiality: Public Distribution

1.3 DOCUMENT STRUCTURE

The document consists of:

 Section 1. Introduction—which describes the purpose of this document, and

provided a brief overview of the contents of the document.

 Section 2. Description of the NGAC Full Prototype (FP)—our implementation

of the NGAC standard, including the policy tool, the policy server, and the

policy specification language.

 Section 3. Integration with other modules—describes the functional architecture

in which the NGAC components are to be applied, and examples of how they

should be used.

 Section 4. Installation and Operation—describes how to install and operate the

NGAC FP components and how to invoke them from other components of the

functional architecture.

 Section 5. NGAC Customisation—describes how NGAC can be customised for

diverse applications.

 Section 6. Software Tools—identifies the software tools used for the

implementation.

 Section 7. Conclusions and Plans.

 Section 8. References.

 APPENDIX A—Provides expanded background on NGAC.

 APPENDIX B—Provides a brief discussion of NGAC-based policy

specification representations.

 D5.4 Full Prototype of the SPT Framework

31 December 2018 Version 1.0 Page 3

Confidentiality: Public Distribution

2. DESCRIPTION OF THE NGAC FULL PROTOTYPE (FP)

The functional architecture of NGAC as applied in the SAFIRE Project is depicted in

Figure 1. We will refer to this figure frequently. Background on NGAC can be found in

APPENDIX A – Next Generation Access Control.

Figure 1: Our NGAC functional architecture with "unbundled" PEP & RAP

The components of the NGAC Full Prototype implementation for SAFIRE are:

 Enhanced ‗ngac‘ policy configuration tool for doing standalone policy

development and testing;

 Policy Server with RESTful APIs implementing the Policy Query Interface;

 Enhanced declarative policy specification language supporting modular policies

and policy composition;

 Policy Access Point implementing the Policy Administration Interface and a

Policy Information Point policy store, also provided within the Policy Server;

 Policy Enforcement Point template implementing the Policy Enforcement

Interface; and,

 Resource Access Point template using the Resource Access Interface.

D5.4 Full Prototype of the SPT Framework

Page 4 Version 1.0 31 December 2018

Confidentiality: Public Distribution

2.1 ‘NGAC’ POLICY TOOL

The ‗ngac‘ policy tool enables standalone policy development and testing and has the

ability to start the policy server. The policy tool offers the command line prompt

―ngac>‖, to which it accepts a number of administrator and advanced user commands.

2.1.1 Policy tool interactive commands

The ‗ngac‘ Policy Tool is a command driven application. After starting ‗ngac‘ it offers

the prompt ―ngac>‖. There are a set of basic commands available in the normal mode

(admin) and an extended set of commands for use by a developer in development mode

(advanced). Entering the command ―help‖ will list the available commands in the

current mode. Only the most commonly needed normal mode (admin) commands are

introduced here.

 access(<policy name>, <permission triple>).

Check whether a permission triple is a derived privilege of the policy.

 admin.

Switch to admin (normal) user mode.

 advanced.

Switch to advanced user mode.

 aoa(<user>).

Show the user accessible object attributes of the current policy.

 combine(<policy name 1>, <policy name 2>, <combined policy name>).

Combine two policies to form a new combined policy with the given name.

 echo(<string >).

Print the argument string, useful in command procedures.

 halt.

Exit the policy tool. (Will also terminate spawned server.)

 help.

List the commands available in the current mode.

 help(<command name>).

Give a synopsis of the named command.

 import_policy(<policy file>).

Import a declarative policy file and make it the current policy.

 newpol(<policy name>).

Set the named policy to be the new current policy.

 nl.

Print a newline, useful in command procedures.

 D5.4 Full Prototype of the SPT Framework

31 December 2018 Version 1.0 Page 5

Confidentiality: Public Distribution

 proc(<procedure name> [, step]).

Run the named command procedure, optionally pausing after each command.

 proc(<procedure name> [, verbose]).

Run the named command procedure, optionally verbose.

 regtest.

Run built-in regression tests.

 script(<file name> [, step]).

Run the named command file, optionally pausing after each command.

 script(<file name> [, verbose]).

Run the named command file, optionally verbose.

 selftest.

Run built-in self tests.

 server(<port >).

Start the policy server on the given port number.

 version.

Display the current version number and version description.

 versions.

Display past and current versions with descriptions.

There are, and may in the future be, additional advanced user commands to support

development and diagnostics.

2.1.2 Command procedures and scripts

There are predefined ‗ngac‘command procedures (―procs‖) that run the examples and

can be used for testing and demonstrations. At the ―ngac>‖ prompt a predefined

procedure (e.g. named ―myproc‖) can be run with the command proc(myproc). It

can be run with verbose output with the command proc(myproc,verbose). It

can be made to prompt and wait for user instruction to proceed (empty line input) with

the command proc(myproc,step).

It is instructive to read the file procs.pl that defines the predefined procedures. The

procedures utilise the same commands available at the command prompt. The user may

define additional procedures in the procs.pl file for subsequent execution as above.

A sequence of ‗ngac‘ commands can also be stored in a file, in which case it is referred

to as a script. Scripts may be run with a script command, analogous to the proc

command, with the script file name substituted for the stored procedure name.

verbose and step are valid options also for the execution of scripts.

D5.4 Full Prototype of the SPT Framework

Page 6 Version 1.0 31 December 2018

Confidentiality: Public Distribution

2.1.3 Implementation

The implementation of the ‗ngac‘ policy tool is comprised of the following Prolog

modules:

 ngac.pl – top level module of ‗ngac‘ policy tool; entry point and initialisation

 param.pl – global parameters

 command.pl – command interpreter and definition of the ‗ngac‘ commands

 common.pl – simple predicates that may be used anywhere

 pio.pl – input / output of various policy representations

 policies.pl – example policies used for built-in self-test

 test.pl – testing framework for self-test and regression tests

 procs.pl – stored built-in ‗ngac‘ command procedures

 pmcmd.pl – PM RI command representations and conversions

 spld.pl – security policy language definitions

2.2 ‘NGAC-SERVER’ LIGHTWEIGHT POLICY SERVER

The ‗ngac-server‘ embodies the following elements of the NGAC Functional

Architecture: Policy Decision Point (PDP), Policy Access/Administration Point (PAP),

and the Policy Information Point (PIP) for policies active at run time.

The policy server may be initiated from within the ‗ngac‘ tool by issuing the command

server(<port>). at the tool‘s command prompt ―ngac>‖. It may also be

initiated from a compiled file at the operating system‘s command prompt.

The ‗ngac-server‘ currently provides two external interfaces, both implemented as

RESTful APIs:

 Policy Query Interface – used by a Policy Enforcement Point to query whether a

given access should be permitted under the current policy.

 Policy Administration Interface – used by a privileged ―shell‖ or ―portal‖ system

program to load and unload policies, combine policies, select policies, etc.

Each of these interfaces will now be described in further detail.

2.2.1 Policy Query Interface (PQI)

A relatively simple interface, in the form of RESTful APIs, constitutes the Policy Query

Interface.

 D5.4 Full Prototype of the SPT Framework

31 December 2018 Version 1.0 Page 7

Confidentiality: Public Distribution

This interface is used by a Policy Enforcement Point to determine whether a client-

requested operation is supported by the associated user‘s permissions on the requested

object under a particular policy, and if the operation is permitted where may the object

be accessed through an appropriate Resource Access Point (RAP).

pqapi/access – test for access permission under current policy
Parameters

 user = <user identifier>

 ar = <access right>

 object = <object identifier>

Returns

 ―permit‖ or ―deny‖ based on the current policy

 ―no current policy‖ if the server does not have a current policy set

Effects

 none

pqapi/getobjectinfo – get object metadata
Parameters

 object = <object identifier>

Returns

 ―object=<obj id>,oclass=<obj class>,inh=<t/f>,host=<host>,

path=<path>,basetype=<btype>,basename=bname>‖

Effects

 none

An active session identifier may be used as an alternative to a user identifier in an

access query made to the Policy Query Interface.

2.2.2 Policy Administration Interface (PAI)

The Policy Administration Interface is now a separate interface (different to the EP). As

in the EP, policy administration may still be done through the policy tool‘s command

line interface, but in the FP it is best done through the server‘s RESTful Policy

Administration API.

In keeping with the principle of least privilege, the policy administration functions

should not be made available to the normal object PEPs. Rather the Policy

Administration API should be accessible only to an administratively authorised user

through the policy administration tool, and some functions such as setpol/getpol should

be accessible only to the ―shell‖ program that executes the NGAC client application. In

this way, the ―shell‖ that controls execution of the application would also determine the

user/session and policy under which the application should execute. Putting the policy

administration APIs in a different location will facilitate limiting their accessibility.

Further, the policy administration API now requires pre-authentication and the

presentation of a token with each API call.

The enhanced server offers the following APIs as the Policy Administration Interface. A

―failure‖ response is typically preceded by a string indicating the reason for the failure.

Implicit in each of the following APIs is an additional parameter, token, which is an

arbitrary string. The token provided in the call must match the token provided to the

server when it was started.

D5.4 Full Prototype of the SPT Framework

Page 8 Version 1.0 31 December 2018

Confidentiality: Public Distribution

paapi/getpol – get current policy being used for policy queries
Parameters

 none

Returns

 <policy identifier> or ―failure‖

Effects

 none

paapi/setpol – set current policy to be used for policy queries
Parameters

 policy = <policy identifier>

Returns

 ―success‖ or ―failure‖

 ―unknown policy‖ if the named policy is not known to the server

Effects

 sets the server‘s current policy to the named policy

paapi/add – add an element to the current policy
Parameters

 policy = <policy identifier>

 policyelement = <policy element> only user, object, and assignment elements as defined in the

declarative policy language; restriction: only user to user attribute and object to object attribute

assignments may be added. Elements referred to by an assignment must be added before adding

an assignment that refers to them.

Returns

 ―success‖ or ―failure‖

Effects

 The named policy is augmented with the provided policy element

paapi/delete – delete an element from the current policy
Parameters

 policy = <policy identifier>

 policyelement = <policy element> permits only user, object, and assignment elements as de-

fined in the declarative policy language; restriction: only user-to-user-attribute and object-to-

object-attribute assignments may be deleted. Assignments must be deleted before the elements to

which they refer.

Returns

 ―success‖ or ―failure‖

Effects

 The specified policy element is deleted from the named policy

paapi/load – load a policy file into the server
Parameters

 policyfile = <policy file name>

Returns

 ―success‖ or ―failure‖

Effects

 stores the loaded policy in the server

 does NOT set the server‘s current policy to the loaded policy

paapi/combinepol – combine policies to form new policy
Parameters

 policy1 = <first policy name>

 policy2 = <second policy name>

 D5.4 Full Prototype of the SPT Framework

31 December 2018 Version 1.0 Page 9

Confidentiality: Public Distribution

 combined = <combined policy name>

Returns

 ―success‖ or ―failure‖

 ―error combining policies‖ if the combine operation fails for any reason

Effects

 the new combined policy is stored on the server

paapi/unload – unload a policy from the server
Parameters

 policy = <policy name>

Returns

 ―success‖ or ―failure‖

 ―unknown policy‖ if the named policy is not known to the server

Effects

 the named policy is unloaded from the server

 sets the server‘s current policy to ―none‖ if the unloaded policy is the current policy

paapi/initsession – initiate a session for user on the server
Parameters

 session = <session identifier>

 user = <user identifier>

Returns

 ―success‖ or ―failure‖

 ―session already registered‖ if already known to the server

Effects

 the new session and user is stored

paapi/endsession – end a session on the server
Parameters

 session = <session identifier>

Returns

 ―success‖ or ―failure‖

 ―session unknown‖ if not known to the server

Effects

 the identified session is deleted from the server

2.2.3 Policy server command line arguments

When a compiled version of the policy tool or the policy server is started from the

command line, several command line options (and synonyms) are recognized.

 --token, -t <admintoken> use the token make authenticated requests to the

paapi

 --deny, -d respond to all access requests with deny

 -- permit --grant -g respond to all access requests with grant

 --import --policy --load -i -l <policyfile> import the policy file

on startup

D5.4 Full Prototype of the SPT Framework

Page 10 Version 1.0 31 December 2018

Confidentiality: Public Distribution

 --port --portnumber --pqport -p <portnumber> server should

listen on specified port number

 --selftest -s run self tests on startup

 --verbose -v show all messages

The policy administration functions should not be made available to the normal object

PEPs. Rather the Policy Administration API should be accessible only to an

administratively authorised user through the policy administration tool or a process with

the same authorisation, and some functions such as setpol/getpol should be accessible

only to the ―shell‖ program that executes the NGAC client application. In this way, the

―shell‖ that controls execution of the application would also determine the user/session

and policy under which the application should execute.

2.2.4 Dynamic policy change

However, it does support dynamic total policy change: the ability to load new policies,

to form new policies composed of already loaded policies, and to select from among the

loaded or composed policies that policy which is to serve as the policy used to make

policy decisions. A policy selection remains in effect until a subsequent policy

selection. The server retains all of the loaded and composed policies for the duration of

its execution. In addition, the current implementation of the ‗ngac-server‘ offers limited

dynamic selective policy change after a policy is loaded or formed by combining

policies. The add and delete APIs provide this capability. Details of the limitations are

provided in the description of the APIs.

The current implementation of the PIP is ephemeral. There is no persistence of the

policy database except in the original policy file(s) used to initialize the server and the

sequence of commands issued to the server to modify policies after loading of policy

files.

2.2.5 Policy Composition

The policy server supports two forms of policy composition. The first is achieved with

the comebinepol API. I forms the composition of policies as described in the NGAC

literature and examples.

The ‗all‘ policy composition is a distinct form of policy composition. When the policy

servers current policy is set to ‗all‘ through the setpol API, all currently loaded policies

are automatically combined for every access request. The manner in which the polices

are combined is as follows:

 Every policy is first qualified to participate in computing the verdict of an access

request. To qualify a policy must be defined to have explicit jurisdiction over

both the user and the object specified in the access request. There must be at

least one qualifying policy.

 D5.4 Full Prototype of the SPT Framework

31 December 2018 Version 1.0 Page 11

Confidentiality: Public Distribution

 All qualified policies are queried with the triple (user, access right, object)

specified in the access request. If any qualified policy returns ‗deny‘ then the

access request returns ‗deny‘.

Sets of policies to be combined according to the ‗all‘ policy composition should be

designed with the foregoing runtime semantics taken into consideration.

2.2.6 Implementation

The implementation of the ‗ngac-server‘ lightweight server is comprised of the

following Prolog modules:

 server.pl – HTTP server for the policy query API and policy admin API

 sessions.pl – registration of session identifiers and associated users to enable

sessions identifiers to be used in place of the user in an access request for the

life of the session.

2.3 POLICY ENFORCEMENT POINT (PEP) AND RESOURCE ACCESS POINT (RAP)

Application developers whose applications are to use resources controlled by the NGAC

implementation must provide PEPs and RAPs for new resource kinds to create the

resource access path as shown in Figure 1.

2.3.1 PEP and RAP Templates

Templates for PEP and RAP are included that provide examples of invoking the Policy

Decision Point (NGAC server) and Resource Access Points by Policy Enforcement

Points.

The PEP template exhibits the definition of a server for a RESTful Policy Enforcement

Interface consisting of the APIs:

 peapi/getLastError – get the error code corresponding to the last error in the API

 peapi/getObject – get an entire object (including opening/closing)

 peapi/putObject – put an entire object (including opening/closing)

 peapi/openObject – open an object for incremental reading/writing

 peapi/readObject – read from an open object

 peapi/writeObject – write to an open object

 peapi/closeObject – close an open object

The RAP template is a example of a RAP for ordinary OS files, and currently

implements file_open, file_close and file_read.

D5.4 Full Prototype of the SPT Framework

Page 12 Version 1.0 31 December 2018

Confidentiality: Public Distribution

2.3.2 Implementation

The implementation of the PEP and RAP templates, as well as a stub for a future unified

node manager (if needed), is comprised of the following Prolog modules:

 pep.pl – defines an example PEP server for a policy enforcement interface

 rap.pl – defines a simple example of a RAP for ordinary files

 nodemgr.pl – stub for a unified node manager pulling together PEP, PDP and

RAP

2.4 DECLARATIVE POLICY LANGUAGE

We have taken steps toward a lightweight implementation of the NGAC standard. For

such a lightweight implementation of NGAC we have developed alternative policy

representations, including an alternative representation of the reference

implementation‘s imperative language and our own declarative language. We envision

future development of the declarative language to include additional features to

facilitate the specification of complex policies for enterprise-wide use and dynamic

policy change.

The declarative representation of our ‗ngac‘ policy tool is used to directly declare the

entities of a policy and the relations among them. The declarative language is an

attractive alternative to using the imperative language as it is much more natural and

intuitive. The ‗ngac‘ policy tool uses the declarative representation to build an internal

database that represents the policy graph and it includes logic to query the database and

to compute access decisions.

The ‗ngac‘ tool may also be used to generate from the declarative form of a policy the

equivalent original imperative form for use with the PM Server. After dynamic policy

change has been implemented this capability will be modified to generate calls to the

RESTful APIs of our lightweight server to effect changes to policies currently loaded

into the server.

2.4.1 Declarative Policy Language Definition

A declarative policy specification is of the form:

policy(<policy name>, <policy root>, <policy elements>).

where,

<policy name> is an identifier for the policy definition

<policy root> is an identifier for the policy class defined by this definition

<policy elements> is a list [<element>, ... , <element>]

 D5.4 Full Prototype of the SPT Framework

31 December 2018 Version 1.0 Page 13

Confidentiality: Public Distribution

where each <element> is one of:

user(<user identifier>)

user_attribute(<user attribute identifier>)

object_class(<object class identifier>, <operations>)

object(<object identifier>)

object(<object identifier>, <object class identifier>, <inh>, <host name>,

<path name>, <base node type>, <base node name>)

object_attribute(<object attribute identifier>)

policy_class(<policy class identifier>)

composed_policy(<new policy name>, <policy name1>, <policy name2>)

operation(<operation identifier>)

assign(<entity identifier>, <entity identifier>)

associate(<user attribute id>, <operations>, <object attribute id>)

where <operations> is a list:

[<operation identifier>, ... , <operation identifier>]

connector('PM′)

The initial character of all identifiers must be a lower-case letter or the identifier must

be quoted with single quotes, e.g. smith or ’Smith’ (identifiers are case sensitive so these

examples are distinct). Quoting of an identifier that starts with a lower-case letter is

optional, e.g. smith and ’smith’ are not distinct.

Additionally:

< inh > can be yes or no.

< host name> contains the name of the host where the corresponding file system object

resides.

< path name> is the complete path name of the corresponding file system object.

D5.4 Full Prototype of the SPT Framework

Page 14 Version 1.0 31 December 2018

Confidentiality: Public Distribution

2.4.2 Example policy in declarative representation

Earlier we presented two graphical policy examples. These examples are a good

resource because they are already developed and well explained in the NGAC and PM

documents. Figure 2 presents example (a) in the declarative representation.

Accompanying the declarative policy is a run of the ‗ngac‘ policy tool that interrogates

the policy with queries such as access(‘Policy (a)’, (u1,r,o1)),

highlighted in Figure 2. Inset in the figure is the graphical representation highlighted

with the path in the graph that enables the permit response.

The ‗ngac‘ tool has also been implemented with a built-in test framework that permits a

customizable set of test cases to be easily integrated and run as a regression test suite

with a single command. The test cases include of both access queries that correspond to

the Policy Query Interface of Figure 1 and other testing queries that expose intermediate

internal results of policy calculations for diagnostic use as can also be seen in Figure 2.

Figure 2: Example policy (a) expressed in the declarative representation

2.5 IMPLEMENTED FP FUNCTIONALITIES

The functionalities represented in the Full Prototype with respect to the Requirements

are summarized in Table 1. It should be borne in mind that D5.2 Early Specification of

SPT Framework, Sections 2 and 3, has already presented rationale for the approach to

 D5.4 Full Prototype of the SPT Framework

31 December 2018 Version 1.0 Page 15

Confidentiality: Public Distribution

the SPT Framework and scope of those functional building blocks identified by the IISF

that will be implemented as part of the SAFIRE effort. We identified a two-pronged

approach, implementing NGAC to make inroads on the problem of system policy

specification and configuration, while delegating mundane (and solved) security issues

to features already provided by a combination of the operating environment and chosen

third party security products. The mapping from the IISF to the Abstract Platform is

intended to identify the implementation of those building blocks in the actual

deployment (or identify the assumptions that should constrain a deferred deployment).

Abbreviations used in Table 1 are: OE – Operating Environment (OE = OS + HW),

3PSM – Third Party Security Mechanisms, AP – Abstract Platform (AP = OE + 3PSM),

EP – Early Prototype, FP – Final Prototype, UC – Use Case, App – Application, SPTM

– Security, Privacy and Trust Methodology/Mapping, Impl – Implemented.

The Abstract Platform is ―implemented‖ by the final mapping of the necessary IISF

functional building blocks to the elements of a specific deployment on a specific OE

with specific selection of 3PSM. This is accomplished according to guidelines provided

by the methodology and subject to a risk analysis of the specific environment.

Table 1: Overview of implemented functionality

No. Requirement Overall
Priority

Status

U94 Ensures data integrity SHALL Delegated to the AP

U95 Prevents unauthorized access SHALL Impl by NGAC FP with AP support, subject

PEP/RAPs and UC App adaptation TBI

U96 Provides secure access to generated
knowledge in the cloud

SHALL Impl by NGAC FP with AP support, subject

PEP/RAPs and UC App adaptation TBI

U98 Provides at least the same level of security
as afforded by the operating environment

SHALL Level commensurate with that afforded by

OE, cannot provide greater

U99 Support for different user roles for secure
access control

SHALL Impl by NGAC with AP support

U100 Supports established authentication
capabilities (hardware / passwords…)

SHALL Delegated to the AP

U101 Provides data confidentiality management
facilities

SHALL Impl by NGAC EP with AP support, subject

PEP/RAPs and UC App adaptation TBI

U102 Provides secure connectivity from
machines to cloud

SHALL Delegated to the AP

U103 Provides support for VPN connectivity SHOULD Delegated to the AP

U104 Provides encryption of data at rest locally SHALL Delegated to the AP

U105 Provides encryption of data at rest in the
cloud

SHALL Delegated to the AP

U106 Provides encryption of data during SHALL Delegated to the AP

D5.4 Full Prototype of the SPT Framework

Page 16 Version 1.0 31 December 2018

Confidentiality: Public Distribution

transport

U107 Supports the establishment of
rules/policies of trustworthiness (safety,
privacy, security, reliability, resilience)

SHALL Impl by NGAC FP and the SPTM

U108 Allows sharing of analysis results with
designated people

SHOULD Impl by NGAC FP with AP support, subject

PEP/RAPs and UC App adaptation TBI

U109 Allows collaboration of designated groups
for building a knowledge base

SHOULD Impl by NGAC FP with AP support, subject

PEP/RAPs and UC App adaptation TBI

U110 Authenticates who/what is sending data SHOULD Delegated to the AP

3. INTEGRATION WITH OTHER MODULES

A single NGAC server instance can support multiple policies simultaneously.

Alternatively, multiple instances of the NGAC server can be run to server clients

running under distinct policies in a large distributed system. Several applications of

NGAC, in addition to the primary mission of endpoint data protection access control,

may be possible within the IISF catalogue of security functional building blocks. For

now, we focus on NGAC-aware applications and SAFIRE infrastructure.

3.1 NGAC-AWARE APPLICATIONS

An NGAC-aware application is one that has been ported to access its critical controlled

resources through NGAC‘s policy enforcement interface. This is accomplished by

modifying the application to replace direct resource access methods with calls to an

NGAC PEP.

Our approach to the NGAC Functional Architecture has been to ―unbundle‖ the PEPs

and RAPs from the NGAC infrastructure and provide a policy server API that can be

called by custom PEPs. This approach places the adoption of NGAC within the

application developer‘s domain and control. The application and the PEPs and RAPs for

the resources it accesses are all developed by the application developer according to a

simple architectural pattern. A call is made by the PEP to the PDP to determine whether

a particular access (consisting of: user, access right, object) is permitted under the

policy before calling the appropriate RAP to access the resource. This call to the PDP

may even be stubbed out (returning ‗grant‘) during development or in the absence of an

operating server so that the developer‘s work is not hindered. The developer is

encouraged to develop RAPs that use the same resources and resource servers, hence

the same Resource Access Interface that the application would have used in an

unmediated scenario.

3.2 POLICY ENFORCEMENT POINT (PEP) AND RESOURCE ACCESS POINT (RAP)

ARCHITECTURAL PATTERN

Client applications (APP) of the NGAC-managed object space must request access to

objects through the Policy Enforcement Interface. The developer of the client must

 D5.4 Full Prototype of the SPT Framework

31 December 2018 Version 1.0 Page 17

Confidentiality: Public Distribution

create a PEP and a RAP for the objects required by the application, if such PEP and

RAP do not already exist for objects of that kind. The architectural pattern to be used is

very straightforward but should be followed faithfully if the integrity of the access

control is to be maintained. (See Figure 1.)

The architectural pattern is designed to achieve this, through two essential features.

First, the PEP must be a distinct process from that of the application, able to be

executed under an identity distinct from that of the user executing the application. The

same is true for the RAP. Second, the PEP and the RAP are very simple in their purpose

and function, and thus are relatively easy to assure by inspection of their code and of the

permissions given to their executables.

The PEPs and the RAPs, as well as the NGAC server itself, execute as a distinct ‗ngac-

user‘ identity. The intrinsic access control mechanisms of the underlying platform

operating system (OS) are used to segregate all NGAC-managed objects and to provide

access to these objects exclusively to processes executing on behalf of the ‗ngac-user‘

identity.

Finally, in a deployed industrial scenario, where there are enterprise-critical resources

and untrusted users and agents, the communications among the APP, PEP, PDP, and

RAP should be performed over encrypted and authenticated sockets. This step requires

an additional layer of key generation, distribution, and management that is well

understood in practice but not done in the prototype.

3.2.1 PEP Policy Enforcement Interface (peapi)

A relatively simple interface, in the form of RESTful APIs, constitutes the Policy

Enforcement Interface.

peapi/getobject – return object content (read)
Parameters

 object = <object identifier>

Returns

 ―success‖ or ―failure‖

 <object data>

peapi/putobject – set object content (write)
Parameters

 object = <object identifier>

 content = <object data>

Returns

 ―success‖ or ―failure‖

3.2.2 RAP Resource Access Interface (raapi)

Resource Access Points embody access methods that would likely be used directly in

the client application if it were to access the resource without mediation by NGAC. The

RAPs may be specific to a kind of object and may be very similar to a code fragment

that would have been used in the application under such a scenario. Thus, the details of

the Resource Access Interface may be chosen by the application developer, and

D5.4 Full Prototype of the SPT Framework

Page 18 Version 1.0 31 December 2018

Confidentiality: Public Distribution

encapsulated in a small distinct process. The PEP determines the appropriate RAP to

call after asking the PDP for a policy verdict and getting the object‘s metadata from the

PIP through a PQI call (getobjectinfo).

 D5.4 Full Prototype of the SPT Framework

31 December 2018 Version 1.0 Page 19

Confidentiality: Public Distribution

4. INSTALLATION AND OPERATION

4.1 INSTALLING AND RUNNING THE ‘NGAC’ POLICY TOOL

The ngac policy tool is implemented in Prolog and requires the SWI Prolog

environment to run. The ngac tool can be provided as a set of Prolog source files and/or

as an ―executable‖ that has the Prolog runtime environment already bundled in. This

executable is made by the shell script mkngac, located with the source files that must be

run in an environment that has SWI Prolog installed.

4.1.1 Install SWI-Prolog

SWI Prolog is available for several operating environments, including Mac, Windows,

and Linux. See http://www.swi-prolog.org.

4.1.2 Install the ‘ngac’ source files and/or executable

The current version of the ngac tool consists of a directory tree including source files

and example files. The distribution is provided as a zip file of this directory tree.

4.1.3 Initiate the ‘ngac’ policy tool

If a ready made executable ‗ngac‘ has been provided it may be executed directly from a

command shell prompt. If you do this skip down to ―Now you should see …‖ below.

Otherwise, in the source directory ngac-server-2018-06 start SWI-Prolog from a

command shell prompt using the name of the SWI-Prolog executable (usually ‗swipl‘,

‗swi-pl‘, or something similar, depending on how it was installed).

After printing a short banner SWI-Prolog will display its prompt ―?- ―.

At the Prolog prompt enter ―[ngac].‖ (not the quotes)

Prolog will compile the code and print ―true.‖

Execute the code by entering at the Prolog prompt ―ngac.‖

Now you should see the ‗ngac‘ prompt ―ngac> ‗

4.1.4 Test the installed ‘ngac’ tool

The ngac tool has some self-tests built in. These should be run to ensure that everything

is working correctly. Follow the instructions in the preceding section to run the ngac

tool. Start it with the Prolog prompt command ―ngac(self_test).‖ This will run some

built-in self tests when it starts. To not run the self-tests simply start the tool with the

Prolog prompt command ―ngac.‖

The self tests can also be run by starting ‗ngac‘ normally and entering at the ‗ngac‘

prompt ―selftest.‖

http://www.swi-prolog.org/

D5.4 Full Prototype of the SPT Framework

Page 20 Version 1.0 31 December 2018

Confidentiality: Public Distribution

Procedures make up of ‗ngac‘ commands may be predefined in the procs.pl file. Look at

the ones there and try them by entering the ngac command ―proc(ProcName).‖, where

ProcName is the name of one of the procedures defined in procs.pl.

4.1.5 Running the examples

There are several examples included with the sources of the ngac Policy Tool. These

include examples described in documents and PowerPoint slide decks used to introduce

the NGAC concepts.

There are predefined procedures (―procs‖) that run the examples. At the ngac> prompt a

predefined procedure (e.g. named ―myproc‖) can be run with the command

proc(myproc). It can be run with verbose output with the command
proc(myproc,verbose).

It is instructive to read the file procs.pl that defines the predefined procedures. The

procedures consist of the same commands available at the command prompt. The user

may define additional procedures in the procs.pl file for subsequent execution as above.

4.2 INSTALLING AND RUNNING THE ‘NGAC-SERVER’

The ngac server is implemented in Prolog and requires the SWI-Prolog environment to

run. The server can be provided as a set of Prolog source files and/or as an ―executable‖

that has the Prolog runtime environment already bundled in. This executable is made by

the shell script mkngac, located with the source files that must be run in an environment

that has SWI Prolog installed.

4.2.1 Install SWI-Prolog

SWI Prolog is available for several operating environments, including Mac, Windows,

and Linux. See http://www.swi-prolog.org.

4.2.2 Install the ‘ngac’ server source files and/or executable

The current version of the ngac server consists of a directory tree including source files

and example files. The distribution is provided as a zip file of this directory tree.

4.2.3 Initiating the ‘ngac-server’

In the EP, the ngac server is started form the ‗ngac‘ policy tool. In the FP the ngac

server may be started with a compiled executable. This is preferable since it allows the

command line options to be specified.

If you do want to start the server from the policy tool follow the instructions above to

get ‗ngac‘ running. After starting ‗ngac‘ it offers the prompt ―ngac>‖. There are a set of

basic commands available in the normal mode (admin) and an extended set of

commands for use by a developer in development mode (advanced). Entering the

command ―help‖ will list the available commands in the current mode. If you want to

load any policy files, do it now with the ‗ngac‘ command

―import(policy(PolicyFileName)).‖, where PolicyFileName is the name of a .pl file

relative to the execution directory. You can also combine policies with the ‗ngac‘

http://www.swi-prolog.org/

 D5.4 Full Prototype of the SPT Framework

31 December 2018 Version 1.0 Page 21

Confidentiality: Public Distribution

―compose‖ command. When you have the desired policies loaded and composed, start

the server from the ‗ngac‘ tool using the command ―server(PortNumber).‖, where

PortNumber is an unused TCP port. The server will be started and will be listening to

that port for calls to its RESTful API. A server started in this way will expect the default

admin token (the string ―admin_token‖, without the quotes) in the policy administration

API calls.

4.2.4 Test the installed ‘ngac-server’

There is a shell script of curl commands included with the source (servercurltest.sh) in

the TEST subdirectory. This script can be run to send a sequence of requests to the

server to test for known correct answers.

D5.4 Full Prototype of the SPT Framework

Page 22 Version 1.0 31 December 2018

Confidentiality: Public Distribution

5. NGAC CUSTOMISATION

5.1 CURRENT CUSTOMISATIONS AND EXTENSIONS

These are customisations and extensions represented in our implementation. These

extensions in some cases are ones that have been done to a previous version of our

implementation, and in some cases are extensions to the NGAC Standard that have

already been done or tentatively planned to be done.

5.1.1 Adaptation and extensions to NGAC for SAFIRE

SAFIRE SPT Framework seeks to make advancements by exploring coherent system-

wide security policy and enforcement in IIoT systems. Thus the SAFIRE Security

Framework must provide an expressive, dynamic, and comprehensible security policy

description and enforcement vehicle. The base requirements are met by the policy

modelling and enforcement framework expressed in the NGAC Functional Architecture

and related standards.

We intend to demonstrate how the application of NGAC can provide a unifying

approach to policy definition and access control in the dynamic FoF IIoT environment

that is the result of reconfiguration and optimisation as in SAFIRE. To do so we will

have to make NGAC more usable, deployable in more diverse environments than its

past reference implementations, make it to be more easily extensible for new kinds of

protected objects, and make it more supportive of large complex policies and policy

composition.

We have described our own version of the NGAC functional architecture with

―unbundled‖ PEP and RAP as shown in Figure 1. This architecture enables a more

extensible implementation of NGAC by easing the addition of new protected object

kinds. Another feature of our version of the architecture is a lightweight Policy Server

that places fewer demands on the operating environment and thus is intended to be more

portable.

Other extensions of our current implementation include:

 Extensions to the declarative policy language

 Support for policy composition

 Unbundled PEPs and RAPs for new object classes

 Constrained dynamic policy change

 Full Policy Query and Policy Administration interfaces

Declarative Policy Language

We have previously developed a simple declarative policy specification. Our expressed

intention was to implement additional features in the language, including:

 D5.4 Full Prototype of the SPT Framework

31 December 2018 Version 1.0 Page 23

Confidentiality: Public Distribution

 Prohibitions, a construct to explicitly specify accesses that are to be denied (in

addition to default deny), is a feature of the NGAC policy framework not

previously implemented in our declarative language. Prohibitions were not

implemented as we have not found a need for them in the use cases that we have

considered.

 Ability to define new object classes – Currently, object classes are arbitrary

identifiers that are not checked. This has been done.

 Ability to define specific operations that correspond to an object class – This

will permit more precise type checking of object operations in policy rules. This

has been done.

 Explicit support for policy composition in the language – Previously, policy

combination was a command in the ‗ngac‘ tool but not part of the language. The

needed features are discussed more in the following section. Composition has

been fully implemented in the policy server as well as in the policy tool. This

has been provided as an alternative to the composition declaration in the

language.

The definition of the declarative policy specification language given in APPENDIX A –

has been extended to include the new language features in these extensions.

Policy Composition

For large heterogeneous IIoT systems there needs to be a representation in the policy

language for the composition of policies and support for various forms of composition.

The previous implementation of the ‗ngac‘ policy tool did not fully support combined

policies such as the example (Figure 5) in the APPENDIX. The implementation has

now been extended to correctly handle such a simple examples. However, we anticipate

a need to express policy composition within the language not just as a command outside

of the language. We have extended the declarative language to include declarative

policy composition and the implemented language processor accepts this extension. The

processing to internally generate the declared composed policy has not been completed

in the FP although much of the needed machinery is in place. The need has been met by

full implementation of composition through the server policy administration API.

Unbundled PEPs and RAPs for new Object Classes

Application developers need to be able to adapt to NGAC without waiting for further

NGAC development before their needed resources can be available under NGAC

authority. The developer already knows the resource and how it is to be accessed by the

application. It should not be necessary to modify the core NGAC implementation for

every such example. Instead, the developer should be able to construct all of the

components of the object access path and test the application without involvement of

the NGAC server if necessary. The necessary components are small trusted components

that consist primarily of code that probably exists already in some form with the

application. The developer must extract relatively small bits of code from the

application and place them into templates for Policy Enforcement Points (PEP) and

D5.4 Full Prototype of the SPT Framework

Page 24 Version 1.0 31 December 2018

Confidentiality: Public Distribution

Resource Access Points (RAP). The Policy Enforcement Interfaces and Resource

Access Interfaces are thus under the control of the developer.

We have developed examples and templates for PEPs and RAPs that application

developers can use to more easily develop PEPs and RAPs, enabling them to add new

kinds of protected resources.

5.2 EXTENSIONS IN FULL PROTOTYPE

5.2.1 Importing Policies to the Server

A rich API has been added to the policy server for policy administration, including

loading, unloading, and combining of policies.

5.2.2 Modifying Policy at Runtime

In addition to loading policies the server has been extended with add and delete APIs to

modify loaded policies by adding or deleting individual policy elements and assignment

relations. This is a limited form of dynamic policy modification that includes:

 Add user

 Add user attribute that is not part of an association (non-associated)

 Add assignment of a new or existing user or user attribute

 Add object

 Add non-associated object attribute

 Add assignment of new or existing object or object attribute

 Delete user and assignment of user to user attribute(s)

 Delete object and assignment of object to object attribute(s)

 Delete empty non-associated user attributes or object attributes

Note that this entails restrictions. There is no addition or deletion of associations and no

deletion of associated (user or object) attributes.

Policy change is achieved through a sequence of calls to the add and delete APIs of the

Policy Administration Interface. Appropriate checks are made when these calls are

made to keep the policy structure in a consistent state. Assignments must be deleted

before the entities assigned can be deleted. Conversely, entities must be added before

assignments can be made.

 D5.4 Full Prototype of the SPT Framework

31 December 2018 Version 1.0 Page 25

Confidentiality: Public Distribution

5.2.3 Policy Composition

The SAFIRE implementation of the policy server has corrected previous deficiencies in

policy composition by modifying the internal data structures and algorithms. This

version also includes a new distinct form of composition of ‗all‘ loaded policies.

5.2.4 Persistence of the Server Policy Database

Currently policies may be loaded into the server and limited forms of change made. We

considered implementation of persistence of the PIP but have not implemented

persistence in the FP. We currently have a constrained form of policy change and it is

not yet clear that starting from a previous (possibly uncertain) state, rather than a

deterministically reproducible state, is better. By recording the sequence of changes to a

known initial policy state (from a policy file) the state after changes can be reliably

reproduced. We will reconsider persistence of the PIP if any of our use cases require it.

D5.4 Full Prototype of the SPT Framework

Page 26 Version 1.0 31 December 2018

Confidentiality: Public Distribution

6. SOFTWARE TOOLS

The implementation of the ‗ngac‘ policy tool and the lightweight ‗ngac-server‘ are

intended to be simple and portable, with minimal external dependencies. Motivation for

its development and the specific objectives are described elsewhere. The NGAG

reference implementations have been very heavyweight with many external

dependencies on languages, libraries and tools.

Our NGAC software is implemented in the Prolog language, which is well suited to

representation and computation over access control policies in the NGAC framework.

The Prolog implementation we use, SWI-Prolog, includes a visual editor and graphical

tracer and a built-in make facility for rapid iterative development.

The only tools necessary for this implementation are SWI-Prolog and the libraries

included in its release; we are currently using version 7.6.4. The release includes a

version of Emacs with a Prolog display profile, though an editor of the developer‘s

choosing may be configured for invocation instead when editing Prolog source files.

 D5.4 Full Prototype of the SPT Framework

31 December 2018 Version 1.0 Page 27

Confidentiality: Public Distribution

7. CONCLUSIONS AND PLANS

We have succeeded in implementing a version of the NGAC standard that computes the

policy calculations for an arbitrary policy or combinations of policies. Existing

examples of NGAC policies, and examples added to exhibit newly implemented

features, are used as built-in self-tests and regression tests to confirm that the tool

computes the known answers and that changes made during development do not cause

the implementation to regress from previously achieved correct operation.

Several extensions to the EP were developed to create the FP. These include those

capabilities needed to fulfil the contemplated application as a mechanism for endpoint

access control in the present use cases.

We intend to continue to develop and enhance our NGAC implementation to meet new

requirements that we encounter as we pursue our exploitation plans.

As has been demonstrated in our mapping of the IISF functional building blocks to the

NGAC approach, there are numerous future potential options for using NGAC in

multiple functional roles within deployments of a SAFIRE-enabled FoF system. When

an NGAC-based approach seems that it would be beneficial, adding features to the

present implementation and already planned extensions will be undertaken to further

expand the capabilities and applicability of the implementation.

D5.4 Full Prototype of the SPT Framework

Page 28 Version 1.0 31 December 2018

Confidentiality: Public Distribution

8. REFERENCES

[FGJ15] David Ferraiolo, Serban Gavrila, and Wayne Jansen. Policy Machine: Features, Ar- chitecture, and

Specification. National Institute of Standards and Technology, October 2015. NIST Internal Report

7987 Revision 1.

[G
+

] Gavrila et al. Policy machine source. https://github.com/PM-Master.

[Gav07] Serban I. Gavrila. The Policy Machine: User Guide, January 2007.

[Int15] InterNational Committee for Information Technology Standards, Cyber security technical committee

1. Information technology—Next Generation Access Control—Generic Operations & Abstract Data

Structures, May 2015. INCITS Project CS1/2195-D, NGAC-GOADS, Revision 1.60 in review, to ap-

pear.

[Int16a] InterNational Committee for Information Technology Standards, Cyber security technical committee

1. Information technology—Next Generation Access Control—Functional Architecture, February

2016. INCITS Project CS1/2194-D, NGAC-FA, Revision 0.70 in review, to appear.

[Int16b] InterNational Committee for Information Technology Standards, Cyber security technical committee

1. Information technology—Next Generation Access Control— Implementation Requirements, Pro-

tocols and API Definitions, February 2016. INCITS Project CS1/2193-D, NGAC-IRPAD, Revision

0.20 in review, to appear.

 D5.4 Full Prototype of the SPT Framework

31 December 2018 Version 1.0 Page 29

Confidentiality: Public Distribution

9. APPENDIX A – NEXT GENERATION ACCESS CONTROL

9.1 NGAC OVERVIEW

The access control policy specification representations to be described are based on the

framework provided by the Next Generation Access Control (NGAC) standard:

 Next Generation Access Control Functional Architecture (NGAC-FA) [Int16a]

 Next Generation Access Control Generic Operations and Data Structures

(NGAC-GOADS) [Int15], and

 Next Generation Access Control Implementation Requirements, Protocols and

API Definitions (NGAC-IRPAD) [Int16b].

Where the standards leave off the ―Policy Machine‖ reference implementation is

consulted for details.

We begin with a description of the access control framework. Following this, we

describe the representations found in the standards or in the reference implementation,

including a graphical representation, the low-level textual representation, and the low-

level imperative command representation are distilled from the standards and the

reference implementation. The low-level imperative command representation of policy

is that of the reference implementation described in [Gav07]. It is capable of dynamic

policy changes that can be done under the control of scripts triggered by events.

Also presented are some alternative policy representations that we have developed,

including an alternative to the low-level imperative command representation and a

novel declarative representation used by our ‗ngac‘ policy tool. The declarative

representation is cleaner and more intuitive. We have not yet investigated its extension

for dynamic policies though our tool does have scripting capabilities that may be

extended and adapted for the purpose.

Examples and figures following are taken from the NGAC standard document and from

documents describing the Policy Machine [FGJ15, Gav07] reference implementation

[G
+
] of the NGAC standard. The examples are recast in the alternative declarative

representation.

9.2 NGAC ROLE IN SAFIRE ARCHITECTURE

The IISF highlights the foundational role of security model and policy in its functional

viewpoint. Critical aspects of this role are those addressed by NGAC.

NGAC is a novel approach to access control that affords unprecedented flexibility and

the ability to represent and enforce arbitrary attribute-based access control policies

within a unified framework. NGAC has not to our knowledge been applied previously

in industrial manufacturing or any Industrial Internet of Things (IIoT) environment.

D5.4 Full Prototype of the SPT Framework

Page 30 Version 1.0 31 December 2018

Confidentiality: Public Distribution

NGAC extensions will also be needed to address SAFIRE real-time data requirements

for security policy enforcement.

The features and particulars of the NGAC reference implementation, and the published

examples, suggest that it has thus far been applied to enterprise IT. However, the

scalability and flexibility of NGAC make it a potent tool for addressing the scale,

complexities, and security challenges of combined IT and OT as found in IIoT systems.

NGAC provides a framework and mechanisms that have the potential to unify the

system-wide access control policies, and provide the ability to understand the net effect

of the composed policies of the underlying mechanisms.

There are several extant reference implementations (RI) of NGAC, mostly under the

name ―Policy Machine‖ (PM), that have been developed in recent years by the principal

authors of the NGAC standards. It has not been an apparent goal of these efforts to

provide an industrially deployable implementation that supports heterogeneous

environments, or that is readily extensible to new kinds of protected objects. Rather, the

re have all been proofs-of-concept, all the more so with the latest versions. Nonetheless,

with versions subsequent to the initial PM, the developers seem to have taken into

consideration some of our comments and requests made over the past two to three years,

with improvements such as independence from Microsoft Windows Server,

independence from Windows Active Directory, and independence from LDAP. They

have moved to store the policy information first in MySQL and then, as an option, in

Neo4j
1
, which is better suited to policies in the NGAC framework. As more recent

prototypes have emerged, they seem to have focused on narrower aspects of NGAC

functionality, rather than a complete system, such as improved algorithms, a Web-

service-based NGAC server, RESTful APIs, and deployment in Docker containers,

though, as far as we understand, not all backward-compatible with their more complete

early PM versions. We continue to monitor the releases of their experiments, as it is

clear that many of their recent developments are relevant to our concerns.

NGAC is described in the source documents [FGJ15], [Int15], [Int16a] and [Int16b].

Several versions of reference implementations of NGAC are described in [G
+
] and

[Gav07].

The Open Group has implemented some of our own NGAC-related tools and a simple

declarative language to express policies that comply with the NGAC framework.

Specifically, a desktop command-line tool called ‗ngac‘ that loads policies expressed in

the declarative language and can answer queries such as ―access(policy1,(u1,r,o2))‖, the

meaning of which is: ―under policy ‗policy1‘, is user ‗u1‘ allowed to read object ‗o2‘?‖.

The declarative language is easily read from a graphical representation of the policy,

and is more intuitive than the imperative language of the PM RI. The ‗ngac‘ policy tool

can generate a translation of the declarative policy in the imperative language for import

into the earlier PM servers. The present declarative language does not support the entire

NGAC policy framework, lacking prohibitions and obligations. The present

1
 Neo4j is a graph database that is available in community and commercial versions.

 D5.4 Full Prototype of the SPT Framework

31 December 2018 Version 1.0 Page 31

Confidentiality: Public Distribution

specification of the declarative language is given in the text of this document. We

anticipate making extensions to this implementation in the future as enumerated in

Section 5.1.1.

9.3 NGAC MOTIVATION

According to the NGAC-FA Standard [Int16a]:

Next Generation Access Control (NGAC) is reinvention of traditional access

control into a form that suits the needs of modern, distributed,

interconnected enterprise. The NGAC framework is designed to be scalable,

to support a wide range of access control policies, to enforce different types

of policies simultaneously, to provide access control services for different

types of resources, and remain manageable in the face of change.

According to the NGAC-FA Standard [Int16a]:

9.4 NGAC POLICY FRAMEWORK

The core constructs of the access control framework are:

 A set of basic elements – representing entities

 A set of containers of different types – to represent characteristics of basic

elements

 A set of relations – to represent relationships among basic elements and

containers

There is also a set of commands for the creation, deletion and maintenance of basic

elements, containers and relations.

The basic elements comprise:

 Users – unique entities that are either humans, trusted programs, or devices  

 Processes – system entities that have a reliable user identity and operate in a

distinct memory  

 Objects – resources to which access is controlled, e.g. files, messages, database

records, etc.  

 Operations – denote actions performed on elements of policy (either external

protected resources or internal resources)  

 access rights – enable actions to be performed on elements of policy (either

external protected resources or internal resources)

Containers comprise:  

 User attributes – defines membership on the basis of an abstract user capability

or prop- erty. The members of a user attribute may be users or other user

attributes. Membership is transitive.  

 Object attributes – defines membership on the basis of an abstract object

characteristic or property. Members of an object attribute may be objects or

other object attributes. Membership is transitive.  

D5.4 Full Prototype of the SPT Framework

Page 32 Version 1.0 31 December 2018

Confidentiality: Public Distribution

 Policy classes – defines membership related to an access control policy, such as

RBAC, MLS. Members of a policy class may be users, user attributes, object, or

object attributes. Multiple policy classes may exist simultaneously.

Every user attribute, object attribute, and policy class has a unique identifier. Policies

are expressed as configurations of relations of the following four types:

 Assignment – defines membership within containers, involves a pair of policy

elements  

 Association – defines authorized modes of access, it is a 3-tuple

< userattribute, accessrightset, attribute >  

 Prohibition – specifies a privilege exception, it is a 4-tuple (of 3 different kinds

described below)  

 Obligation – dynamically alters access state, triggered by an event; it is a 3-tuple

< user, eventpattern, eventresponse >

The prohibition relation has three forms:

 <user, accessrightset, inclusiveattributeset, exclusiveattributeset>

 <userattribute, accessrightset, inclusiveattributeset, exclusiveattributeset>

 <process, accessrightset, inclusiveattributeset, exclusiveattributeset>

Events that trigger obligations may include the following information:  

 Operation;  

 User ID;  

 Process ID;  

 One of the user attributes of the process performing the operation;  

 Policy element ids representing a resource or policy information; or  

 One or more attributes of the resource or policy information on which the

operation has been performed.

From the four configured relation types above, four types of derived relations can be

computed   for the purpose of making access control decisions:

 Access control entry – derived from association; < user, accessright >  

 Capability – derived from association; < accessright, policyelement >  

 Privilege – derived from association; < user, accessright, policyelement >  

 Restriction – derived from conjunctive and disjunctive prohibition relations of

the same form; restricts process from performing an operation against a policy

element, based on process attributes.  

 D5.4 Full Prototype of the SPT Framework

31 December 2018 Version 1.0 Page 33

Confidentiality: Public Distribution

10. APPENDIX B – NGAC-BASED SECURITY POLICY REPRESENTATIONS

There are several representations of policies based on the NGAC policy framework.

10.1 GRAPH REPRESENTATION

Policies expressed in this framework are best considered as mathematical graphs. A

graphical user interface (GUI) is provided within the PM Admin tool of the NGAC

reference implementation. Currently, the implementation of this GUI is limited to

provide only views that can be represented as trees, and therefore it is not a particularly

good visualization of the policy graph. For the examples presented here a more natural

representation as unified directed graphs is used.

Figure 3 illustrates two examples of assignment and association relations as graphs.

Figure 3(a) is an access control policy configuration with policy class ―Project Access‖,

and Figure 3(b) is a data service configuration with ―File Management‖ as its policy

class. On the left side of each graph are users and user attributes, and on the right side

are objects and object attributes. Arrows represent assignment relations and dashed lines

represent associations. An association may also be thought of as a pair of assignments,

the first an assignment of a user attribute to an operation set, and the second an

assignment of the operation set to an object attribute. In the association Division–{r}–

Projects, the policy elements referenced by Projects are objects o1 and o2, meaning

that users u1 and u2 can read objects o1 and o2.

Figure 3: Assignment/Association Graphs

Figure 4 illustrates the independent derived privileges of the separate graphs in Figure

3.

Figure 4: Independent derived privileges from Figure 3(a) and (b)

D5.4 Full Prototype of the SPT Framework

Page 34 Version 1.0 31 December 2018

Confidentiality: Public Distribution

The policy specification technique allows for complex policies to be built up from

separate policies or policy fragments. For example the two policies of Figure 3 when

combined yield the policy graph illustrated in Figure 5.

The derived privileges of the combined graphs (Figure 5) of Figure 3 are shown in

Figure 6.

Figure 5: Combined policy graphs of Figure 3

Figure 6: Derived privileges of the combined graphs of Figure 3

10.2 LOW-LEVEL REPRESENTATIONS

Earlier PM reference implementations used two low-level representations, a low-level

textual representation of the policy machine graph, and a low-level imperative

command representation that represents primitive actions that the Policy Server can

perform to build and manipulate elements of its internal policy model. The Admin Tool

in the PM reference implementation directly manipulates the system-wide model

maintained in the PM Server by passing it commands in an imperative language.

Live update of the system-wide model can easily disrupt normal operations, and is not a

viable practice for policy development and testing. We have implemented a standalone

policy tool called ‗ngac‘ for this purpose. The low-level imperative representation can

be generated by our ‗ngac‘ policy tool, creating files that can be imported by the PM.

